您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (4): 97-103.doi: 10.6040/j.issn.1671-9352.0.2022.506

• • 上一篇    

具有不定位势Kirchhoff型Schrödinger-Bopp-Podolsky系统解的存在性

唐丽琴,王莉*,王军   

  1. 华东交通大学理学院, 江西 南昌 330013
  • 发布日期:2023-03-27
  • 作者简介:唐丽琴(1999— ),女,硕士研究生,研究方向为非线性偏微分方程. E-mail:tangliqin827@163.com*通信作者简介:王莉(1983— ),女,博士,教授,硕士生导师,研究方向为非线性偏微分方程. E-mail:wangli.423@163.com
  • 基金资助:
    国家自然科学基金资助项目(12161038);江西省自然科学基金资助项目(GJJ212204)

Existence of solutions for the Kirchhoff type Schrödinger-Bopp-Podolsky system with indefinite potentials

TANG Li-qin, WANG Li*, WANG Jun   

  1. School of Science, East China Jiaotong University, Nanchang 330013, Jiangxi, China
  • Published:2023-03-27

摘要: 研究Kirchhoff型Schrödinger-Bopp-Podolsky系统,考虑位势函数V不定的情况。此时Schrödinger算子-Δ+V具有有限维负空间。利用Morse理论,得到Kirchhoff型Schrödinger-Bopp-Podolsky系统非平凡解的存在性。

关键词: Kirchhoff型Schrö, dinger-Bopp-Podolsky系统, Morse理论, 不定位势, 临界群

Abstract: This paper is devoted to the Kirchhoff type Schrödinger-Bopp-Podolsky system. It considers the case where the potential V is indefinite so that the Schrödinger operator -Δ+V possesses a finite-dimensional negative space. The authors obtain nontrivial solutions for the Kirchhoff type Schrödinger-Bopp-Podolsky system via Morse theory.

Key words: Kirchhoff type Schrö, dinger-Bopp-Podolsky system, Morse theory, indefinite potential, critical point

中图分类号: 

  • O175.29
[1] BOPP F. Eine lineare theorie des elektrons[J]. Annalen der Physik, 1940, 430(5):345-384.
[2] PODOLSKY B, SCHWED P. Review of a generalized electrodynamics[J]. Reviews of Modern Physics, 1948, 20(1):40-50.
[3] BONHEURE D, CASTERAS J B, DOS SANTOS E M, et al. Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation[J]. SIAM Journal on Mathematical Analysis, 2018, 50(5):5027-5071.
[4] ILAN B, FIBICH G, PAPANICOLAOU G. Self-focusing with fourth-order dispersion[J]. SIAM Journal on Applied Mathematics, 2002, 62(4):1437-1462.
[5] BUFALO R, PIMENTEL B M, SOTO D E. Causal approach for the electron-positron scattering in generalized quantum electrodynamics[J]. Physical Review D, 2014, 90(8):085012.
[6] CUZINATTO R R, DE MELO C A M, MEDEIROS L G, et al. Bopp-Podolsky black holes and the no-hair theorem[J]. The European Physical Journal C, 2018, 78(1):1-9.
[7] DAVENIA P, SICILIANO G. Nonlinear Schrödinger equation in the Bopp-Podolsky electrodynamics: solutions in the electrostatic case[J]. Journal of Differential Equations, 2019, 267(2):1025-1065.
[8] LI L, PUCCI P, TANG X. Ground state solutions for the nonlinear Schrödinger-Bopp-Podolsky system with critical Sobolev exponent[J]. Advanced Nonlinear Studies, 2020, 20(3):511-538.
[9] WANG Lixiong, CHEN Haibo, LIU Senli. Existence and multiplicity of sign-changing solutions for a Schrödinger-Bopp-Podolsky system[J]. Topological Methods in Nonlinear Analysis, 2022, 59(2B):913-940.
[10] CHEN Shangjie, LI Lin. Multiple solutions for the nonhomogeneous Kirchhoff equation on RN[J]. Nonlinear Analysis: Real World Applications, 2013, 14(3):1477-1486.
[11] WU Xian. Existence of nontrivial solutions and high energy solutions for Schrödinger-Kirchhoff-type equations in RN[J]. Nonlinear Analysis: Real World Applications, 2011, 12(2):1278-1287.
[12] HUANG Yisheng, LIU Zeng. On a class of Kirchhoff type problems[J]. Archiv der Mathematik, 2014, 102(2):127-139.
[13] CERAMI G, MOLLE R. Positive bound state solutions for some Schrödinger-Poisson systems[J]. Nonlinearity, 2016, 29(10):3103.
[14] CERAMI G, VAIRA G. Positive solutions for some non-autonomous Schrödinger-Poisson systems[J]. Journal of Differential Equations, 2010, 248(3):521-543.
[15] MURCIA E G, SICILIANO G. Positive semiclassical states for a fractional Schrödinger-Poisson system[J]. Differential and Integral Equations, 2017, 30(3/4):231-258.
[16] RUIZ D. Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere[J]. Mathematical Models and Methods in Applied Sciences, 2005, 15(1):141-164.
[17] AZZOLLINI A, POMPONIO A. Ground state solutions for the nonlinear Schrödinger-Maxwell equations[J]. Journal of Mathematical Analysis and Applications, 2008, 345(1):90-108.
[18] YANG Minbo. Concentration of positive ground state solutions for Schrödinger-Maxwell systems with critical growth[J]. Advanced Nonlinear Studies, 2016, 16(3):389-408.
[19] LIU Shibo,WU Yue. Standing waves for 4-superlinear Schrödinger-Poisson systems with indefinite potentials[J]. Bulletin of the London Mathematical Society, 2017, 49(2):226-234.
[20] FIGUEIREDO G M, SICILIANO G. Multiple solutions for a Schrödinger-Bopp-Podolsky system with positive potentials[EB/OL]. 2020 [2022-10-20]. https://arxiv.org/pdf/2006.12637.pdf.
[21] BENCI V, FORTUNATO D. An eigenvalue problem for the Schrödinger-Maxwell equations[J]. Topological Methods in Nonlinear Analysis, 1998, 11(2):283-293.
[22] BENCI V, FORTUNATO D. Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations[J]. Reviews in Mathematical Physics, 2002, 14(4):409-420.
[23] CHEN Huayang, LIU Shibo. Standing waves with large frequency for 4-superlinear Schrödinger-Poisson systems[J]. Annali di Matematica Pura ed Applicata, 2015, 194(1):43-53.
[24] WILLEM M. Minimax theorems[M]. Boston: Springer Science & Business Media, 1997: 37-70.
[25] LI S, WILLEM M. Applications of local linking to critical point theory[J]. Journal of Mathematical Analysis and Applications, 1995, 189(1):6-32.
[26] CERAMI G, VAIRA G. Positive solutions for some non-autonomous Schrödinger-Poisson systems[J]. Journal of Differential Equations, 2010, 248(3):521-543.
[27] BARTSCH T, LIU Z, WETH T. Sign changing solutions of superlinear Schrödinger equations[J]. Communications in Partial Differential Equations, 2005, 29(1/2):25-42.
[28] CHANG Kungching. Infinite dimensional Morse theory[M]. Boston: Birkhäuser, 1993: 1-82.
[29] BARTSCH T, LI S. Critical point theory for asymptotically quadratic functionals and applications to problems with resonance[J]. Nonlinear Analysis: Theory, Methods & Applications, 1997, 28(3):419-441.
[30] LIU Jiaquan, SU Jiabao. Remarks on multiple nontrivial solutions for quasi-linear resonant problems[J]. Journal of Mathematical Analysis and Applications, 2001, 258(1):209-222.
[31] WANG Zhiqiang. On a superlinear elliptic equation[C] //Annales de lInstitut Henri Poincaré C, Analyse non linéaire. New York: Elsevier Masson, 1991: 43-57.
[1] 王江潮, 张贻民*. 含Hardy位势与临界参数的渐近线性椭圆型方程[J]. J4, 2012, 47(2): 14-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!