《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (4): 16-18.doi: 10.6040/j.issn.1671-9352.0.2022.546
Xiaojin ZHANG(),Yuxuan CHEN*(),Biao GU
摘要:
证明具有τ-倾斜τ-1-倾斜模T的代数A的同调性质, 推广1-Gorenstein代数的性质。给出例子说明代数A未必为1-Gorenstein代数。
中图分类号:
1 | HAPPEL D . On Gorenstein algebra[M]. Basel: Birkhauser Verlag, 1991. |
2 |
ADACHI T , IYAMA O , REITEN I . τ-tilting theory[J]. Compositio Mathematica, 2014, 150, 415- 452.
doi: 10.1112/S0010437X13007422 |
3 | XIE Zongzhen , ZAN Libo , ZHANG Xiaojin . Three results for τ-rigid modules[J]. Rocky Mountain Journal of Mathematics, 2019, 49 (8): 2791- 2807. |
4 |
HAPPEL D , RINGEL C M . Tilted algebras[J]. Transactions of the American Mathematical Society, 1982, 274 (2): 399- 443.
doi: 10.1090/S0002-9947-1982-0675063-2 |
5 |
GENG Yuxian , DING Nanqing . W-Gorenstein modules[J]. Journal of Algebra, 2011, 325 (1): 132- 146.
doi: 10.1016/j.jalgebra.2010.09.040 |
6 | ZHANG Xiaojin . Self-orthogonal τ-tilting modules and tilting modules[J]. Journal of Pure and Applied Algebra, 2022, 226 (3): 10680. |
[1] | 陈文倩,张孝金,昝立博. Gorenstein代数上的倾斜模的个数[J]. 山东大学学报(理学版), 2018, 53(10): 14-16. |
[2] | 章璞. Gorenstein投射模[J]. J4, 2009, 44(2): 1-13. |
|