山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (10): 14-16.doi: 10.6040/j.issn.1671-9352.0.2017.654
陈文倩,张孝金*,昝立博
CHEN Wen-qian, ZHANG Xiao-jin*, ZAN Li-bo
摘要: 若A是一个Gorenstein代数,则倾斜右A-模的个数等于倾斜左A-模的个数。给出反例说明自内射维数大于等于2的Gorenstein代数B的经典倾斜右B-模的个数不一定等于经典倾斜左B-模的个数。
中图分类号:
[1] | BERNSTEIN J, GELFAND I M, PONIMAREV V. Coxeter functors and Gabriels theorem[J]. Russian Mathematical Surveys, 1973, 28(2):17-32. |
[2] | HAPPEL D, RINGEL C M. Tilted algebras[J]. Transactions in the American Mathematical Society, 1982, 274(2):399-443. |
[3] | MIYASHITA Y. Tilting modules of finite projective dimension[J]. Mathematische Zeitschrift, 1986, 193:113-146. |
[4] | ASSEM I, SIMSON D, SKOWRONSKI A. Elements of the representation theory of associative algebras: Vol.1[M]. Cambridge: Cambridge University Press, 2011. |
[5] | AUSLANDER M, SOLBERG O. Gorenstein algebras and algebras with dominant dimension at least 2[J]. Communications in Algebra, 1993, 21(11):3897-3934. |
[6] | ANGELERI-HUGEL L, HAPPEL D, KRAUSE H. Handbook of tilting theory[M]. Cambridge: Cambridge University Press, 2007: 1-484. |
[7] | CHEN H X, XI C C. Dominant dimensions, derived equivalences and tilting modules[J]. Israel Journal of Mathematics, 2016, 215:349-395. |
[8] | IYAMA O, ZHANG X J. Classifying τ-tilting modules over the Auslander algebra of K[x] /(xn)[J/OL]. ArXiv: 1602. 05037. http://cn.arxiv.org/abs/1602.05037. |
[9] | NGUYEN V C, REITEN I, TODOROV G, et al. Dominant dimension and tilting modules[J]. Mathematische Zeitschrift, 2018: 1-27. |
[10] | ZAKS A. Injective dimension of semiprimary rings[J]. Journal of Algebra, 1969, 13:73-86. |
[1] | 孙维昆,林汉兴. 单点扩张代数的表示维数[J]. 山东大学学报(理学版), 2016, 51(6): 85-91. |
[2] | 雷雪萍. 几乎C-倾斜模[J]. J4, 2011, 46(2): 101-104. |
[3] | 章璞. Gorenstein投射模[J]. J4, 2009, 44(2): 1-13. |
[4] | 雷雪萍. WC倾斜模的AuslanderReiten对应[J]. J4, 2009, 44(12): 41-43. |
[5] | 雷雪萍 . W-C-倾斜模[J]. J4, 2008, 43(10): 27-30 . |
|