您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (6): 85-91.doi: 10.6040/j.issn.1671-9352.0.2016.086

• • 上一篇    下一篇

单点扩张代数的表示维数

孙维昆,林汉兴   

  1. 天津职业技术师范大学理学院, 天津 300222
  • 收稿日期:2016-03-07 出版日期:2016-06-20 发布日期:2016-06-15
  • 作者简介:孙维昆(1976— ), 男, 博士, 副教授, 研究方向为计算机代数. E-mail:sunweikun@tute.edu.cn
  • 基金资助:
    天津市自然科学基金(14JCYBJC43100);天津职业技术师范大学科研基金(KJY14-06,KJ12-01)

Representation dimension of one-point extension algebras

SUN Wei-kun, LIN Han-xing   

  1. School of Science, Tianjin University of Technology and Education, Tianjin 300222, China
  • Received:2016-03-07 Online:2016-06-20 Published:2016-06-15

摘要: 设A是一个表示无限型的Artin代数,M是一个左A模,Λ是A通过M得到的单点扩张代数。如果Fac(M)是tilting torsion类,且M是A的某个Auslander生成子的直和项,那么Λ的表示维数不超过A的表示维数,与A的整体维数加2两者的最大值。若M是APR-tilting模或者是BB-tilting模的投射部分,可以证明上述结论对由这两类模所得的单点扩张代数亦成立。

关键词: 单点扩张, 倾斜模, 表示维数

Abstract: Let A be a representation-infinite Artin algebra and M be a left A-module. Let Λ be the one-point extension algebra of A. If Fac(M)is a tilting torsion class and also that M is a direct summand of an Auslander generator about A, then the representation dimension of Λ is not greater than the maximum of representation dimension of A and global dimension of A plus 2. If M is an APR-tilting module or the projective part of a BB-tilting module, the conclusion still holds.

Key words: tilting modules, representation dimension, one-point extension

中图分类号: 

  • O154.2
[1] XI Changchang. Representation dimension and quasi-hereditary algebras[J]. Adv Math, 2002, 168:193-212.
[2] GUO Xiangqian. Representation dimension: An invaraint under stable equivalence[J]. Trans Amer Math Soc, 2005, 357:3255-3263.
[3] IYAMA O. Finiteness of representation dimension[J]. Proc Amer Math Soc, 2003, 131(4):1011-1014.
[4] ROUQUIER R. Representation dimension of exterior algebras[J]. Invent Math, 2006, 165(2):357-367.
[5] XI Changchang. On the representation dimension of finite dimensional algebras[J]. J Algebra, 2000, 226:332-346.
[6] COELHO F U, PLATZECK M I. On the representation dimension of some classes of algebras[J]. J Algebra, 2004, 275:615-628.
[7] OPPERMANN S. Wild algebras have one-point extensions of representation dimension at leasts four[J]. J Pure and Appl Algebra, 2009, 213(10):1945-1960.
[8] SAORIN M. Representation dimension of extensions of hereditary algebras[J]. J Pure and Appl Algebra, 2010, 214(9):1553-1558.
[9] ERDMANN K, HOLM T, IYAMA O, et al. Radical embeddings and representation dimension[J]. Adv Math, 2004, 185:159-177.
[10] ASSEM I. Tilting theory-an introduction, in: Topics in algebra[M] // Banach Centre Publ: vol.26, Warsaw, PWN, 1990: 127-180.
[1] 陈文倩,张孝金,昝立博. Gorenstein代数上的倾斜模的个数[J]. 山东大学学报(理学版), 2018, 53(10): 14-16.
[2] 雷雪萍. 几乎C-倾斜模[J]. J4, 2011, 46(2): 101-104.
[3] 雷雪萍. WC倾斜模的AuslanderReiten对应[J]. J4, 2009, 44(12): 41-43.
[4] 雷雪萍 . W-C-倾斜模[J]. J4, 2008, 43(10): 27-30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!