山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (6): 85-91.doi: 10.6040/j.issn.1671-9352.0.2016.086
孙维昆,林汉兴
SUN Wei-kun, LIN Han-xing
摘要: 设A是一个表示无限型的Artin代数,M是一个左A模,Λ是A通过M得到的单点扩张代数。如果Fac(M)是tilting torsion类,且M是A的某个Auslander生成子的直和项,那么Λ的表示维数不超过A的表示维数,与A的整体维数加2两者的最大值。若M是APR-tilting模或者是BB-tilting模的投射部分,可以证明上述结论对由这两类模所得的单点扩张代数亦成立。
中图分类号:
[1] XI Changchang. Representation dimension and quasi-hereditary algebras[J]. Adv Math, 2002, 168:193-212. [2] GUO Xiangqian. Representation dimension: An invaraint under stable equivalence[J]. Trans Amer Math Soc, 2005, 357:3255-3263. [3] IYAMA O. Finiteness of representation dimension[J]. Proc Amer Math Soc, 2003, 131(4):1011-1014. [4] ROUQUIER R. Representation dimension of exterior algebras[J]. Invent Math, 2006, 165(2):357-367. [5] XI Changchang. On the representation dimension of finite dimensional algebras[J]. J Algebra, 2000, 226:332-346. [6] COELHO F U, PLATZECK M I. On the representation dimension of some classes of algebras[J]. J Algebra, 2004, 275:615-628. [7] OPPERMANN S. Wild algebras have one-point extensions of representation dimension at leasts four[J]. J Pure and Appl Algebra, 2009, 213(10):1945-1960. [8] SAORIN M. Representation dimension of extensions of hereditary algebras[J]. J Pure and Appl Algebra, 2010, 214(9):1553-1558. [9] ERDMANN K, HOLM T, IYAMA O, et al. Radical embeddings and representation dimension[J]. Adv Math, 2004, 185:159-177. [10] ASSEM I. Tilting theory-an introduction, in: Topics in algebra[M] // Banach Centre Publ: vol.26, Warsaw, PWN, 1990: 127-180. |
[1] | 陈文倩,张孝金,昝立博. Gorenstein代数上的倾斜模的个数[J]. 山东大学学报(理学版), 2018, 53(10): 14-16. |
[2] | 雷雪萍. 几乎C-倾斜模[J]. J4, 2011, 46(2): 101-104. |
[3] | 雷雪萍. WC倾斜模的AuslanderReiten对应[J]. J4, 2009, 44(12): 41-43. |
[4] | 雷雪萍 . W-C-倾斜模[J]. J4, 2008, 43(10): 27-30 . |
|