您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (4): 81-89.doi: 10.6040/j.issn.1671-9352.0.2022.622

•   • 上一篇    下一篇

Ostrowski型分数阶积分不等式的推广

党筱楠(),连铁艳*(),李然   

  1. 陕西科技大学数学与数据科学学院,陕西 西安 710021
  • 收稿日期:2022-11-28 出版日期:2024-04-20 发布日期:2024-04-12
  • 通讯作者: 连铁艳 E-mail:1067641420@qq.com;liantieyan@sust.edu.cn
  • 作者简介:党筱楠(1996—),女,硕士研究生,研究方向为模糊积分及其应用. E-mail: 1067641420@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11801342);陕西省自然科学基础研究计划资助项目(2023JCYB043)

Some generalizations of Ostrowski type fractional integral inequalities

Xiaonan DANG(),Tieyan LIAN*(),Ran LI   

  1. School of Mathematics and Data Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
  • Received:2022-11-28 Online:2024-04-20 Published:2024-04-12
  • Contact: Tieyan LIAN E-mail:1067641420@qq.com;liantieyan@sust.edu.cn

摘要:

利用k-β-凸函数与预不变凸函数的定义,提出强k-β-预不变凸函数的定义。通过构建一个k-Riemann-Liouville分数阶积分恒等式,利用强k-β-预不变凸函数的性质及一些积分不等式的方法,建立了一些关于强k-β-预不变凸函数的Ostrowski型k-Riemann-Liouville分数阶积分不等式。

关键词: Ostrowski型不等式, k-β-预不变凸函数, k-Riemann-Liouville分数阶积分, Hölder不等式, 幂平均值不等式

Abstract:

By using the definitions of k-β-convex functions and preinvex functions, the definition of strong k-β-preinvex functions is proposed. Based on constructing a k-Riemann-Liouville fractional integral identity, the properties of strong k-β-preinvex functions and some methods of integral inequalities, some Ostrowski type inequalities for strong k-β-preinvex functions via k-Riemann-Liouville fractional integral are established.

Key words: Ostrowski type inequality, strong k-β-preinvex function, k-Riemann-Liouville fractional integral, Hölder inequality, power mean inequality

中图分类号: 

  • O178
1 OSTROWSKI A .Vber die absolutabweichung einer differentiierbaren funktion von ihrem integralmittelwert[J].Commentarii Mathematici Helvetici,1937,10(1):226-227.
doi: 10.1007/BF01214290
2 FARID G , USMAN M .Ostrowski type k-fractional integral inequalities for MT-convex and h-convex functions[J].Nonlinear Functional Analysis and Applications,2017,22(3):627-639.
3 SET E .New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals[J].Computers & Mathematics with Applications,2012,63(7):1147-1154.
4 KERMAUSUOR S .Ostrowski type inequalities for functions whose derivatives are strongly (α, m)-convex via k-Riemann-Liouville fractional integrals[J].Studia Universitatis Babes-Bolyai Matematica,2019,64(1):25-34.
doi: 10.24193/subbmath.2019.1.03
5 NASIR J , QAISAR S , BUTT S I , et al.Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator[J].AIMS Mathematics,2022,7(3):3303-3320.
doi: 10.3934/math.2022184
6 NOOR M A , NOOR K I , IFTIKHAR S .Fractional Ostrowski inequalities for harmonic h-preinvex functions[J].Facta Universitatis, Series: Mathematics and Informatics,2016,31(2):417-445.
7 MUBEEN S , HABIBULLAH G M .k-Fractional integrals and application[J].Journal of Contemporary Mathematical Analysis,2012,7(2):89-94.
8 颜丽佳, 刘芙萍.强预不变凸函数[J].重庆师范大学学报(自然科学版),2005,22(1):11-15.
YAN Lijia , LIU Fuping .Strongly preinvex functions[J].Journal of Chongqing Normal University(Natural Sciences),2005,22(1):11-15.
9 LAKHAL F .Ostrowski type inequalities for k-β-convex functions via Riemann-Liouville k-fractional integrals[J].Rendiconti del Circolo Matematico di Palermo Series 2,2021,70(3):1561-1578.
10 WEIR T , MOND B .Preinvex functions in multiple objective optimization[J].Journal of Mathematical Analysis and Applications,1988,136(1):29-38.
11 MEFTAHA B , BOUKERRIOUAA K .Some new Ostrowski type inequalities for functions whose second derivative are h-convex via Riemann-Liouville fractional[J].Malaya Journal of Matematik,2014,2(4):445-459.
12 孙文兵, 郑灵红.预不变凸函数的Hermite-Hadamard型分数阶积分不等式的推广[J].中山大学学报(自然科学版),2020,59(4):149-157.
SUN Wenbing , ZHENG Linghong .The generalization of Hermite-Hadamard type fractional integrals inequalities for preinvex functions[J].Journal of Zhongshan University(Natural Sciences),2020,59(4):149-157.
13 IQBAL S, KRULIĆ K, PEČARIĆ J. On an inequality of HG Hardy[J/OL]. Journal of Inequalities and Applications, 2010[2022-11-28]. https://link.springer.com/article/10.1155/2010/264347.
14 MILOVANOVIĆ G V. On some integral inequalities[J/OL]. Publikacije Elektrotehničkog fakulteta. Serija Matematika i fizika, 1975[2022-11-28]. https://www.jstor.org/stable/43667722.
15 CERONE P , DRAGOMIR S S , ROUMELIOTIS J .An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications[J].RGMIA Research Report Collection,1998,1(1):35-42.
16 DRAGOMIR S S , BARNETT N S .An Ostrowski type inequality for mappings whose second derivatives are bounded and applications[J].RGMIA Research Report Collection,1998,1(2):67-75.
17 GUESSAB A , SCHMEISSER G .Sharp integral inequalities of the Hermite-Hadamard type[J].Journal of Approximation Theory,2002,115(2):260-288.
18 匡继昌.常用不等式[M].济南: 山东科学技术出版社,2004:1-94.
KUANG Jichang .Common inequalities[M].Jinan: Shandong Science and Technology Press,2004:1-94.
19 SARIKAYA M Z .On the Ostrowski type integral inequality[J].Acta Mathematica Universitatis Comenianae,2010,79(1):129-134.
20 ÖZDEMIR M E , KAVURMAC H , AVC M .Ostrowski type inequalities for convex functions[J].Tamkang Journal of Mathematics,2014,45(4):335-340.
[1] 杨延涛. 求解单调变分不等式问题的一种修正的次梯度超梯度方法[J]. 山东大学学报(理学版), 2018, 53(2): 38-45.
[2]

李爱芹,范丽亚

. 广义内凸性与不变单调性之间的关系[J]. J4, 2008, 43(5): 71-74 .
[3] . 求解变分不等式的修正三步迭代法[J]. J4, 2009, 44(6): 69-74.
[4] 陈晶晶,杨延涛. 解变分不等式与不动点问题的一种修正的惯性投影算法[J]. 《山东大学学报(理学版)》, 2023, 58(3): 64-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李亚男1,刘磊坡2,王玉光3. 非线性时滞输入系统的滑模控制[J]. J4, 2010, 45(6): 99 -104 .
[2] 张苏梅,马巧灵,赵海霞. 路与圈的积图的(d,1)全标号[J]. J4, 2009, 44(4): 37 -42 .
[3] 苏 祺,项 锟,孙 斌 . 基于链接聚类的Shark-Search算法[J]. J4, 2006, 41(3): 1 -04 .
[4] 秦兆宇,刘师莲*,杨银荣,刘芙君,李建远,宋春华 . 白斑综合征中国对虾肝胰腺蛋白质组学研究的技术探索[J]. J4, 2007, 42(7): 5 -08 .
[5] 伍代勇. 一类具有反馈控制非线性离散Logistic模型的全局吸引性[J]. J4, 2013, 48(4): 114 -110 .
[6] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[7] 张明明,秦永彬. 基于前序关系的非确定型有穷自动机极小化算法[J]. J4, 2010, 45(7): 34 -38 .
[8] 邵国俊,茹淼焱*,孙雪莹. 聚醚接枝聚羧酸系减水剂合成工艺研究[J]. J4, 2013, 48(05): 29 -33 .
[9] 曲晓英,赵 静 . 含时线性Klein-Gordon方程的解[J]. J4, 2007, 42(7): 22 -26 .
[10] 王光臣 . 部分可观测信息下的线性二次非零和随机微分对策[J]. J4, 2007, 42(6): 12 -15 .