《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (4): 81-89.doi: 10.6040/j.issn.1671-9352.0.2022.622
Xiaonan DANG(),Tieyan LIAN*(),Ran LI
摘要:
利用k-β-凸函数与预不变凸函数的定义,提出强k-β-预不变凸函数的定义。通过构建一个k-Riemann-Liouville分数阶积分恒等式,利用强k-β-预不变凸函数的性质及一些积分不等式的方法,建立了一些关于强k-β-预不变凸函数的Ostrowski型k-Riemann-Liouville分数阶积分不等式。
中图分类号:
1 |
OSTROWSKI A .Vber die absolutabweichung einer differentiierbaren funktion von ihrem integralmittelwert[J].Commentarii Mathematici Helvetici,1937,10(1):226-227.
doi: 10.1007/BF01214290 |
2 | FARID G , USMAN M .Ostrowski type k-fractional integral inequalities for MT-convex and h-convex functions[J].Nonlinear Functional Analysis and Applications,2017,22(3):627-639. |
3 | SET E .New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals[J].Computers & Mathematics with Applications,2012,63(7):1147-1154. |
4 |
KERMAUSUOR S .Ostrowski type inequalities for functions whose derivatives are strongly (α, m)-convex via k-Riemann-Liouville fractional integrals[J].Studia Universitatis Babes-Bolyai Matematica,2019,64(1):25-34.
doi: 10.24193/subbmath.2019.1.03 |
5 |
NASIR J , QAISAR S , BUTT S I , et al.Some Ostrowski type inequalities for mappings whose second derivatives are preinvex function via fractional integral operator[J].AIMS Mathematics,2022,7(3):3303-3320.
doi: 10.3934/math.2022184 |
6 | NOOR M A , NOOR K I , IFTIKHAR S .Fractional Ostrowski inequalities for harmonic h-preinvex functions[J].Facta Universitatis, Series: Mathematics and Informatics,2016,31(2):417-445. |
7 | MUBEEN S , HABIBULLAH G M .k-Fractional integrals and application[J].Journal of Contemporary Mathematical Analysis,2012,7(2):89-94. |
8 | 颜丽佳, 刘芙萍.强预不变凸函数[J].重庆师范大学学报(自然科学版),2005,22(1):11-15. |
YAN Lijia , LIU Fuping .Strongly preinvex functions[J].Journal of Chongqing Normal University(Natural Sciences),2005,22(1):11-15. | |
9 | LAKHAL F .Ostrowski type inequalities for k-β-convex functions via Riemann-Liouville k-fractional integrals[J].Rendiconti del Circolo Matematico di Palermo Series 2,2021,70(3):1561-1578. |
10 | WEIR T , MOND B .Preinvex functions in multiple objective optimization[J].Journal of Mathematical Analysis and Applications,1988,136(1):29-38. |
11 | MEFTAHA B , BOUKERRIOUAA K .Some new Ostrowski type inequalities for functions whose second derivative are h-convex via Riemann-Liouville fractional[J].Malaya Journal of Matematik,2014,2(4):445-459. |
12 | 孙文兵, 郑灵红.预不变凸函数的Hermite-Hadamard型分数阶积分不等式的推广[J].中山大学学报(自然科学版),2020,59(4):149-157. |
SUN Wenbing , ZHENG Linghong .The generalization of Hermite-Hadamard type fractional integrals inequalities for preinvex functions[J].Journal of Zhongshan University(Natural Sciences),2020,59(4):149-157. | |
13 | IQBAL S, KRULIĆ K, PEČARIĆ J. On an inequality of HG Hardy[J/OL]. Journal of Inequalities and Applications, 2010[2022-11-28]. https://link.springer.com/article/10.1155/2010/264347. |
14 | MILOVANOVIĆ G V. On some integral inequalities[J/OL]. Publikacije Elektrotehničkog fakulteta. Serija Matematika i fizika, 1975[2022-11-28]. https://www.jstor.org/stable/43667722. |
15 | CERONE P , DRAGOMIR S S , ROUMELIOTIS J .An inequality of Ostrowski type for mappings whose second derivatives are bounded and applications[J].RGMIA Research Report Collection,1998,1(1):35-42. |
16 | DRAGOMIR S S , BARNETT N S .An Ostrowski type inequality for mappings whose second derivatives are bounded and applications[J].RGMIA Research Report Collection,1998,1(2):67-75. |
17 | GUESSAB A , SCHMEISSER G .Sharp integral inequalities of the Hermite-Hadamard type[J].Journal of Approximation Theory,2002,115(2):260-288. |
18 | 匡继昌.常用不等式[M].济南: 山东科学技术出版社,2004:1-94. |
KUANG Jichang .Common inequalities[M].Jinan: Shandong Science and Technology Press,2004:1-94. | |
19 | SARIKAYA M Z .On the Ostrowski type integral inequality[J].Acta Mathematica Universitatis Comenianae,2010,79(1):129-134. |
20 | ÖZDEMIR M E , KAVURMAC H , AVC M .Ostrowski type inequalities for convex functions[J].Tamkang Journal of Mathematics,2014,45(4):335-340. |
[1] | 杨延涛. 求解单调变分不等式问题的一种修正的次梯度超梯度方法[J]. 山东大学学报(理学版), 2018, 53(2): 38-45. |
[2] | 李爱芹,范丽亚 . 广义内凸性与不变单调性之间的关系[J]. J4, 2008, 43(5): 71-74 . |
[3] | . 求解变分不等式的修正三步迭代法[J]. J4, 2009, 44(6): 69-74. |
[4] | 陈晶晶,杨延涛. 解变分不等式与不动点问题的一种修正的惯性投影算法[J]. 《山东大学学报(理学版)》, 2023, 58(3): 64-76. |
|