您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (11): 76-85.doi: 10.6040/j.issn.1671-9352.0.2023.063

•   • 上一篇    下一篇

色散Camassa-Holm方程的可积性及Birkhoff规范型

吴孝平(),种鸽子,姜自文   

  1. 西北大学数学学院, 陕西 西安 710127
  • 收稿日期:2023-02-27 出版日期:2023-11-20 发布日期:2023-11-07
  • 作者简介:吴孝平(1984—),女,讲师,博士,研究方向为偏微分方程的KAM理论. E-mail:506159177@qq.com

Integrability and Birkhoff normal form of the dispersive Camassa-Holm equation

Xiaoping WU(),Gezi CHONG,Ziwen JIANG   

  1. School of Mathematics, Northwest University, Xi'an 710127, Shaanxi, China
  • Received:2023-02-27 Online:2023-11-20 Published:2023-11-07

摘要:

基于已知的单位圆周上的非色散Camassa-Holm方程的无穷多守恒律, 构造出相应色散方程且新的二次项具有统一形式的无穷多守恒律。作为其重要应用, 证明了色散Camassa-Holm方程任意阶的Birkhoff规范型是保作用量的。

关键词: Camassa-Holm方程, 守恒量, 保作用量的Birkhoff规范型

Abstract:

Based on the infinitely many conserved quantites of the non-dispersive Camassa-Holm equation defined on the circle, we construct the infinitely many new ones whose quadratic parts have a consistent form for the corresponding dispersive equation. As an important application, we prove that the Birkhoff normal form of any order for the dispersive Camassa-Holm equation is action-preserving.

Key words: Camassa-Holm equation, conserved quantities, action-preserving Birkhoff normal form

中图分类号: 

  • O175.29
1 CAMASSA R , HOLM D D . An integrable shallow water equation with peaked solitons[J]. Physical Review Letters, 1993, 71 (11): 1661- 1664.
doi: 10.1103/PhysRevLett.71.1661
2 CASATI P , LORENZONI P , ORTENZI G , et al. On the local and nonlocal Camassa-Holm hierarchies[J]. Journal of Mathematical Physics, 2005, 46 (4): 042704.
doi: 10.1063/1.1888568
3 FUCHSSTEINER B , FOKAS A S . Symplectic structures, their Bäcklund transformations and hereditary symmetries[J]. Physica D-Noninear Phenomina, 1981, 4 (1): 47- 66.
doi: 10.1016/0167-2789(81)90004-X
4 ALBER M S , CAMASSA R , HOLM D D , et al. The geometry of peaked solitons and billiard solutions of a class of integrable PDEs[J]. Letters in Mathematical Physics, 1994, 32 (2): 137- 151.
doi: 10.1007/BF00739423
5 CONSTANTIN A . Existence of permanent and breaking waves for a shallow water equation: a geometric approach[J]. Annales de l'Institut Fourier, 2000, 50 (2): 321- 362.
doi: 10.5802/aif.1757
6 CONSTANTIN A , ESCHER J . On the blow-up rate and the blow-up set of breaking waves for a shallow water equation[J]. Mathematische Zeitschrift, 2000, 233 (1): 75- 91.
doi: 10.1007/PL00004793
7 LI Y A , OLVER P J . Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation[J]. Journal of Differential Equations, 2000, 162 (1): 27- 63.
doi: 10.1006/jdeq.1999.3683
8 KAPPELER T , PÖSCHEL J . KAM & KdV[M]. Berlin: Springer, 2003: 118- 127.
9 DEGASPERIS A , KHOLM D D , KHON A N I . A new integrable equation with peakon solutions[J]. Theoretical and Mathematical Physics, 2002, 133 (2): 1463- 1474.
doi: 10.1023/A:1021186408422
10 CONSTANTIN A , LANNES D . The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[J]. Archive for Rational Mechanics and Analysis, 2009, 192 (1): 165- 186.
doi: 10.1007/s00205-008-0128-2
11 FEOLA R , GIULIANI F , PROCESI M . Reducible KAM tori for the Degasperis-Procesi equation[J]. Communications in Mathematical Physics, 2020, 377 (3): 1681- 1759.
doi: 10.1007/s00220-020-03788-z
12 FEOLA R , GIULIANI F , PASQUALI S . On the integrability of Degasperis-Procesi equation: control of the Sobolev norms and Birkhoff resonances[J]. Journal of Differential Equations, 2019, 266 (6): 3390- 3437.
doi: 10.1016/j.jde.2018.09.003
13 PÖSCHEL J , TRUBOWITZ E . Inverse spectral theory[M]. Boston: Academic Press, 1987: 125- 139.
[1] 余野,王海权. 一类高阶Camassa-Holm方程的渐近行为[J]. 《山东大学学报(理学版)》, 2022, 57(1): 89-94.
[2] 宗西举,王中华. 一维黏性Camassa-Holm方程描述的液体-固体的相互作用[J]. J4, 2011, 46(2): 34-38.
[3] 董文山 . 广义经典完整非保守力学系统Lie对称性及其守恒量[J]. J4, 2007, 42(9): 30-35 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘保仓,史开泉 . S-粗集的信度特征[J]. J4, 2006, 41(5): 26 -29 .
[2] 郭 会,林 超 . 对流占优Sobolev方程的最小二乘特征混合有限元方法[J]. J4, 2008, 43(9): 45 -50 .
[3] 唐风琴1,白建明2. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. J4, 2013, 48(1): 100 -106 .
[4] 王 瑶,刘 建,王仁卿,* . 阿利效应及其对生物入侵和自然保护中小种群管理的启示[J]. J4, 2007, 42(1): 76 -82 .
[5] . 极限limλ→0 Y(λI+AY) -1存在的充要条件[J]. J4, 2009, 44(6): 10 -13 .
[6] 李新华,董守平,赵志勇,陈俊峰, . 减阻沟槽表面近壁湍流相干运动的实验研究[J]. J4, 2006, 41(2): 106 -110 .
[7] 张丽,许玉铭 . σ1-空间及其性质[J]. J4, 2006, 41(5): 30 -32 .
[8] 刘才然, 宋贤梅. 环Fl+vFl+v2Fl上的二次剩余码[J]. 山东大学学报(理学版), 2014, 49(10): 45 -49 .
[9] 尹华军1,2,张习勇1,2*. 特征为2的有限域上二次函数指数和计算的新方法[J]. J4, 2013, 48(3): 24 -30 .
[10] 耿建艳,颜 谨,李 峰 . 二部图中含指定顶点的独立4-圈[J]. J4, 2008, 43(5): 87 -92 .