您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (10): 10-21.doi: 10.6040/j.issn.1671-9352.0.2023.089

• • 上一篇    

半导体问题漂移扩散模型的超弱间断Galerkin方法

艾露露,刘蕴贤*   

  1. 山东大学数学学院, 山东 济南 250100
  • 发布日期:2024-10-10
  • 通讯作者: 刘蕴贤(1974— ),女,教授,硕士生导师,博士,研究方向为偏微分方程数值解. E-mail:yxliu@sdu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12071262);山东省自然科学基金资助项目(ZR201911130593);山东省自然科学基金资助项目(ZR2020MA048)

An ultra-weak discontinuous Galerkin method for drift-diffusion model of semiconductor problem

AI Lulu, LIU Yunxian*   

  1. School of Mathematics, Shandong University, Jinan 250100, Shandong, China
  • Published:2024-10-10

摘要: 利用超弱间断Galerkin(ultra-weak discontinuous Galerkin, UWDG)方法对一维半导体漂移扩散模型进行数值模拟,并给出了误差分析。该方法具有经典间断Galerkin方法的优点。相较于局部间断Galerkin方法,它在求解含高阶空间导数的偏微分方程时,可以不引入辅助变量,在结构上更简单,在计算上更直接。主要技术困难在于选取合适的投影对方法进行误差估计。数值模拟的结果验证了UWDG方法的稳定性。

关键词: 漂移扩散模型, 超弱间断Galerkin方法, 误差分析, 数值模拟

Abstract: An ultra-weak discontinuous Galerkin(UWDG)method is developed for the drift-diffusion model of the semiconductor problem with the error analysis. The UWDG method has the advantage of the classical discontinuous Galerkin(DG)method. Compared to the local discontinuous Galerkin method, this method can solve partial differential equations with higher-order spatial derivatives without introducing auxiliary variables, which is simpler in scheme and more direct in calculation. The main technical difficulty is to select the appropriate projection for error analysis. A numerical simulation is performed to validate the numerical stability of the UWDG method.

Key words: drift-diffusion model, ultra-weak discontinuous Galerkin method, error analysis, numerical simulation

中图分类号: 

  • O241.82
[1] JEROME J W. Analysis of charge transport[M]. Berlin: Springer-Verlag, 1996:9-26.
[2] CERCIGNANI C, GAMBA I M, JEROME J W, et al. Device benchmark comparisons via kinetic, hydrodynamic, and high-field models[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 181(4):381-392.
[3] REED W H, HILL T R. Triangular mesh methods for the neutron transport equation[R/OL].(1973-10-31)[2023-02-28].https://www.osti.gov/biblio/4491151.
[4] LESAINT P, RAVIVART P A. On a finite element method for solving the neutron transport equation[EB/OL].(1974-04-03)[2023-02-28]. https://www.sciencedirect.com/science/article/pii/B978012208350150008X.
[5] COCKBURN B, SHU C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework[J]. Mathematics of Computation, 1989, 52(186):411-435.
[6] COCKBURN B, HOU S, SHU C W. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case[J]. Mathematics of Computation, 1990, 54(190):545-581.
[7] COCKBURN B, SHU C W. The Runge-Kutta local projection p1-discontinuous Galerkin finite element method for scalar conservation laws[J]. Mathematical Modelling and Numerical Analysis, 1991, 25(3):337-361.
[8] COCKBURN B, SHU C W. The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems[J]. Journal of Computational Physics, 1998, 141(2):199-224.
[9] COCKBURN B, SHU C W. The local discontinuous Galerkin method for time dependent convection-diffusion systems[J]. SIAM Journal on Numerical Analysis, 1998, 35(6):2440-2463.
[10] LIU Y X, SHU C W. Error analysis of the semi-discrete local discontinuous Galerkin method for semiconductor device simulation models[J]. Science China Mathematics, 2010, 53(12):3255-3278.
[11] LIU Y X, SHU C W. Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices[J]. Science China Mathematics, 2016, 59(1):115-140.
[12] CESSENAT O, DESPRES B. Application of an ultra weak variational formulation of elliptic PDES to the two-dimensional Helmholtz problem[J]. SIAM Journal on Numerical Analysis, 1998, 35(1):255-299.
[13] CHENG Y D, SHU C W. A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives[J]. Mathematics of Computation, 2008, 77(262):699-730.
[14] CIARLET P G. The finite element method for elliptic problems[M]. Paris: Society for Industrial and Applied Mathematics, 2002.
[15] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. Journal of Computational Physics, 1988, 77(2):439-471.
[1] 王雅迪,袁海龙. 时滞Lengyel-Epstein反应扩散系统的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(8): 92-103.
[2] 任建龙. 利用内部温度史重构表面未知热通量[J]. 《山东大学学报(理学版)》, 2019, 54(9): 83-90.
[3] 曹伟东,戴涛,于金彪,王晓宏,施安峰. 化学驱模型中压力方程的交替方向解法改进[J]. 山东大学学报(理学版), 2018, 53(10): 88-94.
[4] 杨文彬, 李艳玲. 一类具有非单调生长率的捕食-食饵系统的动力学[J]. 山东大学学报(理学版), 2015, 50(03): 80-87.
[5] 郭兰兰1,2,耿介1,石硕1,3,苑飞1,雷丽1,杜广生1*. 基于UDF方法的阀门变速关闭过程中的#br# 水击压强计算研究[J]. 山东大学学报(理学版), 2014, 49(03): 27-30.
[6] 李海侠1,2,李艳玲1. 一类带B-D反应项的食物链模型正解的稳定性和惟一性[J]. J4, 2013, 48(09): 103-110.
[7] 郭尊光1,孔涛2*,李鹏飞2, 张微2. 基于最优实施边界的美式期权定价的数值方法[J]. J4, 2012, 47(3): 110-119.
[8] 王耀. 正弦力场下随机行走问题的理论分析与数值模拟[J]. J4, 2010, 45(9): 74-78.
[9] 田明鲁,刘蕴贤. Cahn-Hilliard方程的局部间断Galerkin方法[J]. J4, 2010, 45(8): 27-31.
[10] 张兴刚,孔维姝 . 两端固定弹性弦的理论研究与数值模拟[J]. J4, 2008, 43(10): 71-76 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!