《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (10): 10-21.doi: 10.6040/j.issn.1671-9352.0.2023.089
• • 上一篇
艾露露,刘蕴贤*
AI Lulu, LIU Yunxian*
摘要: 利用超弱间断Galerkin(ultra-weak discontinuous Galerkin, UWDG)方法对一维半导体漂移扩散模型进行数值模拟,并给出了误差分析。该方法具有经典间断Galerkin方法的优点。相较于局部间断Galerkin方法,它在求解含高阶空间导数的偏微分方程时,可以不引入辅助变量,在结构上更简单,在计算上更直接。主要技术困难在于选取合适的投影对方法进行误差估计。数值模拟的结果验证了UWDG方法的稳定性。
中图分类号:
[1] JEROME J W. Analysis of charge transport[M]. Berlin: Springer-Verlag, 1996:9-26. [2] CERCIGNANI C, GAMBA I M, JEROME J W, et al. Device benchmark comparisons via kinetic, hydrodynamic, and high-field models[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 181(4):381-392. [3] REED W H, HILL T R. Triangular mesh methods for the neutron transport equation[R/OL].(1973-10-31)[2023-02-28].https://www.osti.gov/biblio/4491151. [4] LESAINT P, RAVIVART P A. On a finite element method for solving the neutron transport equation[EB/OL].(1974-04-03)[2023-02-28]. https://www.sciencedirect.com/science/article/pii/B978012208350150008X. [5] COCKBURN B, SHU C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework[J]. Mathematics of Computation, 1989, 52(186):411-435. [6] COCKBURN B, HOU S, SHU C W. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case[J]. Mathematics of Computation, 1990, 54(190):545-581. [7] COCKBURN B, SHU C W. The Runge-Kutta local projection p1-discontinuous Galerkin finite element method for scalar conservation laws[J]. Mathematical Modelling and Numerical Analysis, 1991, 25(3):337-361. [8] COCKBURN B, SHU C W. The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems[J]. Journal of Computational Physics, 1998, 141(2):199-224. [9] COCKBURN B, SHU C W. The local discontinuous Galerkin method for time dependent convection-diffusion systems[J]. SIAM Journal on Numerical Analysis, 1998, 35(6):2440-2463. [10] LIU Y X, SHU C W. Error analysis of the semi-discrete local discontinuous Galerkin method for semiconductor device simulation models[J]. Science China Mathematics, 2010, 53(12):3255-3278. [11] LIU Y X, SHU C W. Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices[J]. Science China Mathematics, 2016, 59(1):115-140. [12] CESSENAT O, DESPRES B. Application of an ultra weak variational formulation of elliptic PDES to the two-dimensional Helmholtz problem[J]. SIAM Journal on Numerical Analysis, 1998, 35(1):255-299. [13] CHENG Y D, SHU C W. A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives[J]. Mathematics of Computation, 2008, 77(262):699-730. [14] CIARLET P G. The finite element method for elliptic problems[M]. Paris: Society for Industrial and Applied Mathematics, 2002. [15] SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock capturing schemes[J]. Journal of Computational Physics, 1988, 77(2):439-471. |
[1] | 王雅迪,袁海龙. 时滞Lengyel-Epstein反应扩散系统的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(8): 92-103. |
[2] | 任建龙. 利用内部温度史重构表面未知热通量[J]. 《山东大学学报(理学版)》, 2019, 54(9): 83-90. |
[3] | 曹伟东,戴涛,于金彪,王晓宏,施安峰. 化学驱模型中压力方程的交替方向解法改进[J]. 山东大学学报(理学版), 2018, 53(10): 88-94. |
[4] | 杨文彬, 李艳玲. 一类具有非单调生长率的捕食-食饵系统的动力学[J]. 山东大学学报(理学版), 2015, 50(03): 80-87. |
[5] | 郭兰兰1,2,耿介1,石硕1,3,苑飞1,雷丽1,杜广生1*. 基于UDF方法的阀门变速关闭过程中的#br# 水击压强计算研究[J]. 山东大学学报(理学版), 2014, 49(03): 27-30. |
[6] | 李海侠1,2,李艳玲1. 一类带B-D反应项的食物链模型正解的稳定性和惟一性[J]. J4, 2013, 48(09): 103-110. |
[7] | 郭尊光1,孔涛2*,李鹏飞2, 张微2. 基于最优实施边界的美式期权定价的数值方法[J]. J4, 2012, 47(3): 110-119. |
[8] | 王耀. 正弦力场下随机行走问题的理论分析与数值模拟[J]. J4, 2010, 45(9): 74-78. |
[9] | 田明鲁,刘蕴贤. Cahn-Hilliard方程的局部间断Galerkin方法[J]. J4, 2010, 45(8): 27-31. |
[10] | 张兴刚,孔维姝 . 两端固定弹性弦的理论研究与数值模拟[J]. J4, 2008, 43(10): 71-76 . |
|