《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (10): 22-29.doi: 10.6040/j.issn.1671-9352.0.2023.236
Zhenai LI(),Hui WEI*(
),Xin CHEN
摘要:
通过MONES转换技术将非线性方程组转换为双目标优化问题, 利用MNSGA-Ⅱ算法中的动态拥挤距离策略提高Pareto解集的多样性, 在种群选择过程中动态计算个体的拥挤距离。为了验证算法的性能, 选择30个非线性方程组进行测试, 对比了基于MONES转换技术的NSGA-Ⅱ、动态NSGA-Ⅱ和MNSGA-Ⅱ算法。实验结果表明, 基于MONES转换技术的MNSGA-Ⅱ算法在寻根率和成功率方面更具优势。最后, 将3个算法得到的Pareto前沿进行对比, 且验证本文算法所得Pareto前沿在均匀性和收敛性方面表现较好。
中图分类号:
1 |
FUJITA H , CIMR D . Computer aided detection for fibrillations and flutters using deep convolutional neural network[J]. Information Sciences, 2019, 486, 231- 239.
doi: 10.1016/j.ins.2019.02.065 |
2 |
ZHAO J , XU Y T , FUJITA H . An improved non-parallel Universum support vector machine and its safe sample screening rule[J]. Knowledge-Based Systems, 2019, 170, 79- 88.
doi: 10.1016/j.knosys.2019.01.031 |
3 |
WU S , WANG H J . A modified Newton-like method for nonlinear equations[J]. Computational and Applied Mathematics, 2020, 39 (3): 238.
doi: 10.1007/s40314-020-01283-8 |
4 |
WANG X F , JIN Y F H , ZHAO Y L . Derivative-free iterative methods with some Kurchatov-type accelerating parameters for solving nonlinear systems[J]. Symmetry, 2021, 13 (6): 943.
doi: 10.3390/sym13060943 |
5 |
YUAN G L , LI T T , HU W J . A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems[J]. Applied Numerical Mathematics, 2020, 147, 129- 141.
doi: 10.1016/j.apnum.2019.08.022 |
6 |
WANG K , GONG W Y , LIAO Z W , et al. Hybrid niching-based differential evolution with two archives for nonlinear equation system[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52 (12): 7469- 7481.
doi: 10.1109/TSMC.2022.3157816 |
7 | ALGELANY A M , EL-SHORBAGY M A . Chaotic enhanced genetic algorithm for solving the nonlinear system of equations[J]. Computational Intelligence and Neuroscience, 2022, 2022, 1376479. |
8 |
PAN L Q , ZHAO Y , LI L H . Neighborhood-based particle swarm optimization with discrete crossover for nonlinear equation systems[J]. Swarm and Evolutionary Computation, 2022, 69, 101019.
doi: 10.1016/j.swevo.2021.101019 |
9 |
NOBAHARI H , NASROLLAHI S . A terminal guidance algorithm based on ant colony optimization[J]. Computers and Electrical Engineering, 2019, 77, 128- 146.
doi: 10.1016/j.compeleceng.2019.05.012 |
10 |
GAO W F , LUO Y T , XU J W , et al. Evolutionary algorithm with multiobjective optimization technique for solving nonlinear equation systems[J]. Information Sciences, 2020, 541, 345- 361.
doi: 10.1016/j.ins.2020.06.042 |
11 | SONG W , WANG Y , LI H X , et al. Locating multiple optimal solutions of nonlinear equation systems based on multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 19 (3): 414- 431. |
12 |
DEB K , PRATAP A , AGRAWAL S , et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182- 197.
doi: 10.1109/4235.996017 |
13 |
GONG W Y , WANG Y , CAI Z H , et al. A weighted biobjective transformation technique for locating multiple optimal solutions of nonlinear equation systems[J]. IEEE Transactions on Evolutionary Computation, 2017, 21 (5): 697- 713.
doi: 10.1109/TEVC.2017.2670779 |
14 |
JI J Y , WONG M L . Decomposition-based multiobjective optimization for nonlinear equation systems with many and infinitely many roots[J]. Information Sciences, 2022, 610, 605- 623.
doi: 10.1016/j.ins.2022.07.187 |
15 |
LIANG Z P , WU T C , MA X L , et al. A dynamic multiobjective evolutionary algorithm based on decision variable classification[J]. IEEE Transactions on Cybernetics, 2022, 52 (3): 1602- 1615.
doi: 10.1109/TCYB.2020.2986600 |
16 |
ZHANG K , SHEN C N , LIU X M , et al. Multiobjective evolution strategy for dynamic multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 24 (5): 974- 988.
doi: 10.1109/TEVC.2020.2985323 |
17 | WANG J H , LIANG G X , ZHANG J . Cooperative differential evolution framework for constrained multiobjective optimization[J]. IEEE Transactions on Cybernetics, 2018, 49 (6): 2060- 2072. |
18 | LUO B, ZHENG J H, XIE J L, et al. Dynamic crowding distance: a new diversity maintenance strategy for MOEAs[C]//2008 Fourth International Conference on Natural Computation. New York: IEEE, 2008: 580-585. |
19 |
LIAO Z W , GONG W Y , WANG L , et al. A decomposition-based differential evolution with reinitialization for nonlinear equations systems[J]. Knowledge-Based Systems, 2020, 191, 105312.
doi: 10.1016/j.knosys.2019.105312 |
20 | 廖作文, 龚文引, 王凌. 基于改进环拓扑混合群体智能算法的非线性方程组多根联解[J]. 中国科学: 信息科学, 2020, 50 (3): 396- 407. |
LIAO Zuowen , GONG Wenyin , WANG Ling . A hybrid swarm intelligence with improved ring topology for nonlinear equations[J]. Scientia Sinica Informationis, 2022, 50 (3): 396- 407. | |
21 | GONG W Y , WANG Y , CAI Z H , et al. Finding multiple roots of nonlinear equation systems via a repulsion-based adaptive differential evolution[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 50 (4): 1499- 1513. |
[1] | 房明磊,丁德凤,王敏,盛雨婷. 一种求解非线性方程组的改进Shamanskii-like Levenberg-Marquardt算法[J]. 《山东大学学报(理学版)》, 2023, 58(8): 118-126. |
[2] | 崔建斌,姬安召,鲁洪江,王玉风,何姜毅,许泰. Schwarz Christoffel变换数值解法[J]. 山东大学学报(理学版), 2016, 51(4): 104-111. |
[3] | 王洋. 求解一类非线性方程组的Newton-PLHSS方法[J]. J4, 2012, 47(12): 96-102. |
[4] | 陈 蓓 . 求解Toeplitz矩阵特征值反问题的不精确牛顿方法[J]. J4, 2008, 43(9): 89-93 . |
|