您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (10): 22-29.doi: 10.6040/j.issn.1671-9352.0.2023.236

• • 上一篇    

基于双目标的MNSGA-II算法求解非线性方程组

李侦瑷,韦慧*,陈馨   

  1. 安徽理工大学数学与大数据学院, 安徽 淮南 232001
  • 发布日期:2024-10-10
  • 通讯作者: 韦慧(1986— ),女,副教授,博士,研究方向为偏微分方程数值解. E-mail: weihui@aust.edu.cn
  • 基金资助:
    安徽省自然科学基金资助项目(2108085MA14);国家自然科学基金资助项目(11601007)

MNSGA-II algorithm based on bi-objective for solving nonlinear equation systems

LI Zhenai, WEI Hui*, CHEN Xin   

  1. School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan 232001, Anhui, China
  • Published:2024-10-10

摘要: 通过MONES转换技术将非线性方程组转换为双目标优化问题,利用MNSGA-II算法中的动态拥挤距离策略提高Pareto解集的多样性,在种群选择过程中动态计算个体的拥挤距离。为了验证算法的性能,选择30个非线性方程组进行测试,对比了基于MONES转换技术的NSGA-II、动态NSGA-II和MNSGA-II算法。实验结果表明,基于MONES转换技术的MNSGA-II算法在寻根率和成功率方面更具优势。最后,将3个算法得到的Pareto前沿进行对比,且验证本文算法所得Pareto前沿在均匀性和收敛性方面表现较好。

关键词: 非线性方程组, MONES转换技术, 动态拥挤距离, 非支配排序遗传算法

Abstract: MONES transformation technique is applied to transform the problem of solving nonlinear equation systems into a bi-objective optimization problem, and a dynamic crowding distance strategy of MNSGA-II algorithm is included to dynamically calculate individual crowding distance in the process of population selection, which improves the diversity of Pareto front. In order to verify the performance of algorithm, thirty nonlinear equation systems are selected for testing NSGA-II, dynamic NSGA-II and MNSGA-II algorithm based on MONES transformation technique. Experimental results show that MNSGA-II algorithm based on MONES transformation technique has a better root-found ratio and success rate. Finally, the Pareto front of three algorithms mentioned above is compared, and the uniformity and convergence of Pareto front of the proposed algorithm performs better than others.

Key words: nonlinear equation system, MONES transformation technique, dynamic crowding distance, non-dominated sorting genetic algorithm

中图分类号: 

  • O241
[1] FUJITA H, CIMR D. Computer aided detection for fibrillations and flutters using deep convolutional neural network[J]. Information Sciences, 2019, 486:231-239.
[2] ZHAO J, XU Y T, FUJITA H. An improved non-parallel Universum support vector machine and its safe sample screening rule[J]. Knowledge-Based Systems, 2019, 170:79-88.
[3] WU S, WANG H J. A modified Newton-like method for nonlinear equations[J]. Computational and Applied Mathematics, 2020, 39(3):238.
[4] WANG X F, JIN Y F H, ZHAO Y L. Derivative-free iterative methods with some Kurchatov-type accelerating parameters for solving nonlinear systems[J]. Symmetry, 2021, 13(6):943.
[5] YUAN G L, LI T T, HU W J. A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems[J]. Applied Numerical Mathematics, 2020, 147:129-141.
[6] WANG K, GONG W Y, LIAO Z W, et al. Hybrid niching-based differential evolution with two archives for nonlinear equation system[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(12):7469-7481.
[7] ALGELANY A M, EL-SHORBAGY M A. Chaotic enhanced genetic algorithm for solving the nonlinear system of equations[J]. Computational Intelligence and Neuroscience, 2022, 2022:1376479.
[8] PAN L Q, ZHAO Y, LI L H. Neighborhood-based particle swarm optimization with discrete crossover for nonlinear equation systems[J]. Swarm and Evolutionary Computation, 2022, 69:101019.
[9] NOBAHARI H, NASROLLAHI S. A terminal guidance algorithm based on ant colony optimization[J]. Computers and Electrical Engineering, 2019, 77:128-146.
[10] GAO W F, LUO Y T, XU J W, et al. Evolutionary algorithm with multiobjective optimization technique for solving nonlinear equation systems[J]. Information Sciences, 2020, 541:345-361.
[11] SONG W, WANG Y, LI H X, et al. Locating multiple optimal solutions of nonlinear equation systems based on multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(3):414-431.
[12] DEB K, PRATAP A, AGRAWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
[13] GONG W Y, WANG Y, CAI Z H, et al. A weighted biobjective transformation technique for locating multiple optimal solutions of nonlinear equation systems[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(5):697-713.
[14] JI J Y, WONG M L. Decomposition-based multiobjective optimization for nonlinear equation systems with many and infinitely many roots[J]. Information Sciences, 2022, 610:605-623.
[15] LIANG Z P, WU T C, MA X L, et al. A dynamic multiobjective evolutionary algorithm based on decision variable classification[J]. IEEE Transactions on Cybernetics, 2022, 52(3):1602-1615.
[16] ZHANG K, SHEN C N, LIU X M, et al. Multiobjective evolution strategy for dynamic multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(5):974-988.
[17] WANG J H, LIANG G X, ZHANG J. Cooperative differential evolution framework for constrained multiobjective optimization[J]. IEEE Transactions on Cybernetics, 2018, 49(6):2060-2072.
[18] LUO B, ZHENG J H, XIE J L, et al. Dynamic crowding distance: a new diversity maintenance strategy for MOEAs [C] //2008 Fourth International Conference on Natural Computation. New York: IEEE, 2008:580-585.
[19] LIAO Z W, GONG W Y, WANG L, et al. A decomposition-based differential evolution with reinitialization for nonlinear equations systems[J]. Knowledge-Based Systems, 2020, 191:105312.
[20] 廖作文,龚文引,王凌. 基于改进环拓扑混合群体智能算法的非线性方程组多根联解[J]. 中国科学: 信息科学, 2020, 50(3):396-407. LIAO Zuowen, GONG Wenyin, WANG Ling. A hybrid swarm intelligence with improved ring topology for nonlinear equations[J]. Scientia Sinica Informationis, 2022, 50(3):396-407.
[21] GONG W Y, WANG Y, CAI Z H, et al. Finding multiple roots of nonlinear equation systems via a repulsion-based adaptive differential evolution[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 50(4):1499-1513.
[1] 房明磊,丁德凤,王敏,盛雨婷. 一种求解非线性方程组的改进Shamanskii-like Levenberg-Marquardt算法[J]. 《山东大学学报(理学版)》, 2023, 58(8): 118-126.
[2] 崔建斌,姬安召,鲁洪江,王玉风,何姜毅,许泰. Schwarz Christoffel变换数值解法[J]. 山东大学学报(理学版), 2016, 51(4): 104-111.
[3] 王洋. 求解一类非线性方程组的Newton-PLHSS方法[J]. J4, 2012, 47(12): 96-102.
[4] 陈 蓓 . 求解Toeplitz矩阵特征值反问题的不精确牛顿方法[J]. J4, 2008, 43(9): 89-93 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!