《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (10): 22-29.doi: 10.6040/j.issn.1671-9352.0.2023.236
• • 上一篇
李侦瑷,韦慧*,陈馨
LI Zhenai, WEI Hui*, CHEN Xin
摘要: 通过MONES转换技术将非线性方程组转换为双目标优化问题,利用MNSGA-II算法中的动态拥挤距离策略提高Pareto解集的多样性,在种群选择过程中动态计算个体的拥挤距离。为了验证算法的性能,选择30个非线性方程组进行测试,对比了基于MONES转换技术的NSGA-II、动态NSGA-II和MNSGA-II算法。实验结果表明,基于MONES转换技术的MNSGA-II算法在寻根率和成功率方面更具优势。最后,将3个算法得到的Pareto前沿进行对比,且验证本文算法所得Pareto前沿在均匀性和收敛性方面表现较好。
中图分类号:
[1] FUJITA H, CIMR D. Computer aided detection for fibrillations and flutters using deep convolutional neural network[J]. Information Sciences, 2019, 486:231-239. [2] ZHAO J, XU Y T, FUJITA H. An improved non-parallel Universum support vector machine and its safe sample screening rule[J]. Knowledge-Based Systems, 2019, 170:79-88. [3] WU S, WANG H J. A modified Newton-like method for nonlinear equations[J]. Computational and Applied Mathematics, 2020, 39(3):238. [4] WANG X F, JIN Y F H, ZHAO Y L. Derivative-free iterative methods with some Kurchatov-type accelerating parameters for solving nonlinear systems[J]. Symmetry, 2021, 13(6):943. [5] YUAN G L, LI T T, HU W J. A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems[J]. Applied Numerical Mathematics, 2020, 147:129-141. [6] WANG K, GONG W Y, LIAO Z W, et al. Hybrid niching-based differential evolution with two archives for nonlinear equation system[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(12):7469-7481. [7] ALGELANY A M, EL-SHORBAGY M A. Chaotic enhanced genetic algorithm for solving the nonlinear system of equations[J]. Computational Intelligence and Neuroscience, 2022, 2022:1376479. [8] PAN L Q, ZHAO Y, LI L H. Neighborhood-based particle swarm optimization with discrete crossover for nonlinear equation systems[J]. Swarm and Evolutionary Computation, 2022, 69:101019. [9] NOBAHARI H, NASROLLAHI S. A terminal guidance algorithm based on ant colony optimization[J]. Computers and Electrical Engineering, 2019, 77:128-146. [10] GAO W F, LUO Y T, XU J W, et al. Evolutionary algorithm with multiobjective optimization technique for solving nonlinear equation systems[J]. Information Sciences, 2020, 541:345-361. [11] SONG W, WANG Y, LI H X, et al. Locating multiple optimal solutions of nonlinear equation systems based on multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 19(3):414-431. [12] DEB K, PRATAP A, AGRAWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. [13] GONG W Y, WANG Y, CAI Z H, et al. A weighted biobjective transformation technique for locating multiple optimal solutions of nonlinear equation systems[J]. IEEE Transactions on Evolutionary Computation, 2017, 21(5):697-713. [14] JI J Y, WONG M L. Decomposition-based multiobjective optimization for nonlinear equation systems with many and infinitely many roots[J]. Information Sciences, 2022, 610:605-623. [15] LIANG Z P, WU T C, MA X L, et al. A dynamic multiobjective evolutionary algorithm based on decision variable classification[J]. IEEE Transactions on Cybernetics, 2022, 52(3):1602-1615. [16] ZHANG K, SHEN C N, LIU X M, et al. Multiobjective evolution strategy for dynamic multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(5):974-988. [17] WANG J H, LIANG G X, ZHANG J. Cooperative differential evolution framework for constrained multiobjective optimization[J]. IEEE Transactions on Cybernetics, 2018, 49(6):2060-2072. [18] LUO B, ZHENG J H, XIE J L, et al. Dynamic crowding distance: a new diversity maintenance strategy for MOEAs [C] //2008 Fourth International Conference on Natural Computation. New York: IEEE, 2008:580-585. [19] LIAO Z W, GONG W Y, WANG L, et al. A decomposition-based differential evolution with reinitialization for nonlinear equations systems[J]. Knowledge-Based Systems, 2020, 191:105312. [20] 廖作文,龚文引,王凌. 基于改进环拓扑混合群体智能算法的非线性方程组多根联解[J]. 中国科学: 信息科学, 2020, 50(3):396-407. LIAO Zuowen, GONG Wenyin, WANG Ling. A hybrid swarm intelligence with improved ring topology for nonlinear equations[J]. Scientia Sinica Informationis, 2022, 50(3):396-407. [21] GONG W Y, WANG Y, CAI Z H, et al. Finding multiple roots of nonlinear equation systems via a repulsion-based adaptive differential evolution[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 50(4):1499-1513. |
[1] | 房明磊,丁德凤,王敏,盛雨婷. 一种求解非线性方程组的改进Shamanskii-like Levenberg-Marquardt算法[J]. 《山东大学学报(理学版)》, 2023, 58(8): 118-126. |
[2] | 崔建斌,姬安召,鲁洪江,王玉风,何姜毅,许泰. Schwarz Christoffel变换数值解法[J]. 山东大学学报(理学版), 2016, 51(4): 104-111. |
[3] | 王洋. 求解一类非线性方程组的Newton-PLHSS方法[J]. J4, 2012, 47(12): 96-102. |
[4] | 陈 蓓 . 求解Toeplitz矩阵特征值反问题的不精确牛顿方法[J]. J4, 2008, 43(9): 89-93 . |
|