山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (4): 104-111.doi: 10.6040/j.issn.1671-9352.0.2015.152
崔建斌1,姬安召2,鲁洪江3,王玉风2,何姜毅2,许泰2
CUI Jian-bin1, JI An-zhao2, LU Hong-jiang3, WANG Yu-feng2, HE Jiang-yi2, XU Tai2
摘要: Schwarz Christoffel变换技术在某些工程问题处理中有着重要作用。本文研究Schwarz Christoffel变换方法及其所涉及的数值解法,采用Levenberg-Marquardt算法求解Schwarz Christoffel变换参数的非线性系统。为了提高数值计算精度,对于Schwarz Christoffel变换中出现的奇异积分问题,通过搜寻区间奇异点,细分积分区间,在子区间中采用高斯雅克比型积分,并对其权函数正交多项式零点和权值进行校正。最后给出算例验证了该方法的可行性。
中图分类号:
[1] 王刚,许汉珍,顾王明,等. 数值许瓦尔兹——克力斯托夫变换与数值高斯——雅可比型积分[J].海军工程学院学报,1994, 1(2):25-34. WANG Gang, XU Hanzhen, GU Wangming, et al. Numerical schwarz-christoffel transformation and numerical Gauss-Jacobi quadrature[J].Journal of Naval Academy of Engineering, 1994, 1(2):25-34. [2] 王刚,陆小刚,顾王明. 槽形内域中的数值许瓦尔兹——克力斯托夫保角变换[J].海军工程学院学报,1995,1(4):16-23. WANG Gang, LU Xiaogang, GU Wangming. Numerical schwarz-christoffel conformal mapping in channel region[J]. Journal of Naval Academy of Engineering, 1995, 1(4):16-23. [3] 田雨波,钱鉴. 施瓦茨——克里斯托弗反变换的快速收敛算法及其应用[J].电波科学学报,2003,18(1):1-6. TIAN Yubo, QIAN Jian. Rapidly convergent algorithm for inverse schwarz-christoffel transformations and its application[J].Chinese Journal of Radio Science, 2003, 18(1):1-6. [4] COSTAMAGNA E, FANNI. Analysis of rectangular coaxial structures by numerical inversion of the Schwarz-Christoffel transformation[J].IEEE Transactions on Magnetics, 1992, 28(2):1454-1457. [5] CHUANG J M, GUI Q Y, HSIUNG C C. Numerical computation of schwarz-christoffel transformation for simply connected unbounded domain[J]. Computer Methods in Applied Mechanics and Engineering, 1993, 105(1):93-109. [6] HU C. A software package for computing schwarz-christoffel conformal transformation for doubly connected polygonal regions[J]. ACM Transactions on Mathematical Software, 1998, 24(3):317-333. [7] COSTAMAGNA E. Numerical inversion of the Schwarz-Christoffel conformal transformation: strip-line case studies[J]. Microwave and Optical Technology Letters, 2001, 28(3):179-183. [8] DRISCOLL T A. A MATLAB toolbox for Schwarz-Christoffel mapping[J]. ACM Transactions on Mathematical Software, 1996, 22(2):168-186. [9] COSTAMAGNA E. A new approach to standard Schwarz-Christoffel formula calculations[J]. Microwave and Optical Technology Letters, 2002, 32(3):196-199. [10] DRISCOLL T A. Improvements to the Schwarz-Christoffel toolbox for MATLAB[J]. ACM Transactions on Mathematical Software, 2005, 31(2):239-251. [11] HOUGH D M. Asymptotic Gauss-Jacobi quadrature error estimation for Schwarz-Christoffel integrals[J]. Journal of Approximation Theory, 2007, 146(2):157-173. [12] TREFETHEN L N. Numerical computation of the Schwarz-Christoffel transformation[J].Society for Industrial and Applied Mathematics, 1980, 1(1):82-102. [13] SUNDARARAJAN N, STEPHANE B, MAHAPATRA D R. Numerical integration over arbitrary polygonal domains based on Schwarz-Christoffel conformal mapping[J].International Journal for Numerical Methods in Engineering, 2009, 80(1):103-134. [14] CROWDY Darren. The Schwarz-Christoffel mapping to bounded multiply connected polygonal domains[J]. Proceedings of The Royal Society, 2005, 146(2061):2653-2678. [15] PATRIZI G. Numerical methods for unconstrained optimization and nonlinear equations[J]. European Journal of Operational Research, 1985, 20(1):119-120. [16] 刘浩.大规模非线性方程组和无约束优化方法研究[D].上海:南京航空航天大学,2008. LIU Hao. Research on methods for large-scale nonlinear equations and unconstrained optimization[D]. Shanghai: Nanjing University of Aeronautics and Astronautics, 2008. |
[1] | 王洋. 求解一类非线性方程组的Newton-PLHSS方法[J]. J4, 2012, 47(12): 96-102. |
[2] | 陈 蓓 . 求解Toeplitz矩阵特征值反问题的不精确牛顿方法[J]. J4, 2008, 43(9): 89-93 . |
[3] | 杜红珊,石少广,张 蕾 . 弹性圆域中Ⅲ型分叉裂纹的应力强度因子[J]. J4, 2007, 42(9): 101-106 . |
|