《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (10): 30-39.doi: 10.6040/j.issn.1671-9352.0.2023.112
• • 上一篇
阿迪力·艾力,开依沙尔·热合曼*
Adil ALI, Kaysar RAHMAN*
摘要: 对Dirichlet边界和Neumann边界条件下的广义Burgers-Fisher方程构造了高精度数值计算格式。首先,空间上分别采取均匀网格和Chebyshev-Gauss-Lobatto网格的拉格朗日插值多项式微分求积法,时间上采取三阶强稳定性保持Runge-Kutta格式;其次,利用矩阵方法进行稳定性分析;最后,对2种不同边界条件下的数值例子进行数值计算,并将结果和其他数值方法进行比较,验证本文格式的有效性。
中图分类号:
[1] FISHER R A. The wave of advance of advantageous genes[J]. Annals of Eugenics, 1937, 7(4):355-369. [2] MENDOZA J, MURIEL C. New exact solutions for a generalized Burgers-Fisher equation[J]. Chaos, Solitons & Fractals, 2021, 152:101-109. [3] SARI M, GÜRARSLAN G, DAG(·overI). A compact finite difference method for the solution of the generalized Burgers-Fisher equation[J]. Numerical Methods for Partial Differential Equations: An International Journal, 2010, 26(1):125-134. [4] 武莉莉.求解一类非线性偏微分方程的高精度紧致差分方法[J].西北师范大学学报(自然科学版),2021,57(3):26-31. WU Lili. A high-order compact difference method for solving a class of nonlinear partial differential equations[J]. Journal of Northwest Normal University(Natural Science), 2021, 57(3):26-31. [5] KAYA D, EL-SAYED S M. A numerical simulation and explicit solutions of the generalized Burgers-Fisher equation[J]. Applied Mathematics and Computation, 2004, 152(2):403-413. [6] ISMAIL H N A, RASLAN K, ABD RABBOH A A. Adomian decomposition method for Burgers-Huxley and Burgers-Fisher equations[J]. Applied Mathematics and Computation, 2004, 159(1):291-301. [7] ISMAIL H N A, ABD RABBOH A A. A restrictive Padé approximation for the solution of the generalized Fisher and Burger-Fisher equations[J]. Applied Mathematics and Computation, 2004, 154(1):203-210. [8] BRATSOS A G, KHALIQ A Q M. An exponential time differencing method of lines for Burgers-Fisher and coupled Burgers equations[J]. Journal of Computational and Applied Mathematics, 2019, 356:182-197. [9] WASIM I, ABBAS M, AMIN M. Hybrid B-spline collocation method for solving the generalized Burgers-Fisher and Burgers-Huxley equations[J]. Mathematical Problems in Engineering, 2018, 2018:1-18. [10] WAZWAZ A M. The tanh method for generalized forms of nonlinear heat conduction and Burgers-Fisher equations[J]. Applied Mathematics and Computation, 2005, 169(1):321-338. [11] WAZWAZ A M. The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations[J]. Applied Mathematics and Computation, 2007, 188(2):1467-1475. [12] MOGHIMI M, HEJAZI F S A. Variational iteration method for solving generalized Burger-Fisher and Burger equations[J]. Chaos, Solitons & Fractals, 2007, 33(5):1756-1761. [13] FAHMY E S. Travelling wave solutions for some time-delayed equations through factorizations[J]. Chaos, Solitons & Fractals, 2008, 38(4):1209-1216. [14] GOLBABAI A, JAVIDI M. A spectral domain decomposition approach for the generalized Burgers-Fisher equation[J]. Chaos, Solitons & Fractals, 2009, 39(1):385-392. [15] LI X, WANG D, SAEED T. Multi-scale numerical approach to the polymer filling process in the weld line region[J]. Facta Universitatis, Series: Mechanical Engineering, 2022, 20(2):363-380. [16] 周家全,孙应德,张永胜.Burgers方程的非协调特征有限元方法[J].山东大学学报(理学版),2012,47(12):103-108. ZHOU Jiaquan, SUN Yingde, ZHANG Yongsheng. A nonconforming characteristic finite element method for Burgers equations[J]. Journal of Shandong University(Natural Science), 2012, 47(12):103-108. [17] BELLMAN R, KASHEF B G, CASTI J. Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations[J]. Journal of Computational Physics, 1972, 10(1):40-52. [18] BERT C W, MALIK M. Differential quadrature method in computational mechanics: a review[J]. Applied Mechanics Reviews, 1996, 49(1):1-28. [19] JIWARI R, SINGH S, KUMAR A. Numerical simulation to capture the pattern formation of coupled reaction-diffusion models[J]. Chaos, Solitons & Fractals, 2017, 103:422-439. [20] ARORA G, JOSHI V. A computational approach for one and two dimensional Fishers equation using quadrature technique[J]. American Journal of Mathematical and Management Sciences, 2021, 40(2):145-162. [21] SHU C. Differential quadrature and its application in engineering[M]. New York: Springer, 2000. [22] KORKMAZ A, DAG(·overI). Shock wave simulations using sinc differential quadrature method[J]. Engineering Computations, 2011, 28(6):654-674. [23] KORKMAZ A, DAG(·overI). A differential quadrature algorithm for simulations of nonlinear Schrödinger equation[J]. Computers & Mathematics with Applications, 2008, 56(9):2222-2234. [24] SARI M. Differential quadrature solutions of the generalized Burgers-Fisher equation with a strong stability preserving high-order time integration[J]. Mathematical and Computational Applications, 2011, 16(2):477-486. [25] SARI M, GÜRARSLAN G. Numerical solutions of the generalized Burgers-Huxley equation by a differential quadrature method[J]. Mathematical Problems in Engineering, 2009, 2009:1-11. [26] JIWARI R, PANDIT S, MITTAL R C. A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions[J]. Applied Mathematics and Computation, 2012, 218(13):7279-7294. [27] GOTTLIEB S, SHU C W, TADMOR E. Strong stability-preserving high-order time discretization methods[J]. SIAM Review, 2001, 43(1):89-112. [28] TOMASIELLO S. Stability and accuracy of the iterative differential quadrature method[J]. International Journal for Numerical Methods in Engineering, 2003, 58(9):1277-1296. [29] TOMASIELLO S. Numerical stability of DQ solutions of wave problems[J]. Numerical Algorithms, 2011, 57(3):289-312. [30] JAIN M K. Numerical solution of differential equations[M]. 2nd ed. New York:Wiley, 1983. [31] WANG K L, HE C H. A remark on Wangs fractal variational principle[J]. Fractals, 2019, 27(8):195-198. |
[1] | 郭鹏,张磊,王小云,孙小伟. 几个特殊类型非线性方程的显式精确解[J]. J4, 2012, 47(12): 115-120. |
|