您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (10): 30-39.doi: 10.6040/j.issn.1671-9352.0.2023.112

• • 上一篇    

求解广义Burgers-Fisher方程的微分求积法

阿迪力·艾力,开依沙尔·热合曼*   

  1. 新疆大学数学与系统科学学院, 新疆 乌鲁木齐 830046
  • 发布日期:2024-10-10
  • 通讯作者: 开依沙尔·热合曼(1978— ),男,副教授,研究生导师,博士,研究方向为微分方程数值计算. E-mail:kaysar106@xju.edu.cn
  • 基金资助:
    新疆大学博士启动基金项目(BS150204)

Differential quadrature method for solving the generalized Burgers-Fisher equations

Adil ALI, Kaysar RAHMAN*   

  1. College of Mathematics and System Science, Xinjiang University, Urumqi 830046, Xinjiang, China
  • Published:2024-10-10

摘要: 对Dirichlet边界和Neumann边界条件下的广义Burgers-Fisher方程构造了高精度数值计算格式。首先,空间上分别采取均匀网格和Chebyshev-Gauss-Lobatto网格的拉格朗日插值多项式微分求积法,时间上采取三阶强稳定性保持Runge-Kutta格式;其次,利用矩阵方法进行稳定性分析;最后,对2种不同边界条件下的数值例子进行数值计算,并将结果和其他数值方法进行比较,验证本文格式的有效性。

关键词: 广义Burgers-Fisher方程, 微分求积法, Chebyshev-Gauss-Lobatto网格, 强稳定性保持Runge-Kutta格式

Abstract: In this paper, a high accuracy numerical scheme is constructed for the generalized Burgers-Fisher equation with Dirichlet boundary or Neumann boundary conditions. Firstly, the Lagrange interpolation polynomial differential quadrature method with uniform grid and Chebyshev-Gauss-Lobatto grid is used in space, and the third-order strong stability-preserving Runge-Kutta scheme is used in time. Secondly, the stability of the scheme is analyzed by using the matrix method. Finally, two numerical examples with different boundary conditions are calculated, and the results are compared with other numerical methods to verify the effectiveness of the proposed scheme.

Key words: generalized Burgers-Fisher equation, differential quadrature method, Chebyshev-Gauss-Lobatto grid, strong stability-preserving Runge-Kutta scheme

中图分类号: 

  • O241
[1] FISHER R A. The wave of advance of advantageous genes[J]. Annals of Eugenics, 1937, 7(4):355-369.
[2] MENDOZA J, MURIEL C. New exact solutions for a generalized Burgers-Fisher equation[J]. Chaos, Solitons & Fractals, 2021, 152:101-109.
[3] SARI M, GÜRARSLAN G, DAG(·overI). A compact finite difference method for the solution of the generalized Burgers-Fisher equation[J]. Numerical Methods for Partial Differential Equations: An International Journal, 2010, 26(1):125-134.
[4] 武莉莉.求解一类非线性偏微分方程的高精度紧致差分方法[J].西北师范大学学报(自然科学版),2021,57(3):26-31. WU Lili. A high-order compact difference method for solving a class of nonlinear partial differential equations[J]. Journal of Northwest Normal University(Natural Science), 2021, 57(3):26-31.
[5] KAYA D, EL-SAYED S M. A numerical simulation and explicit solutions of the generalized Burgers-Fisher equation[J]. Applied Mathematics and Computation, 2004, 152(2):403-413.
[6] ISMAIL H N A, RASLAN K, ABD RABBOH A A. Adomian decomposition method for Burgers-Huxley and Burgers-Fisher equations[J]. Applied Mathematics and Computation, 2004, 159(1):291-301.
[7] ISMAIL H N A, ABD RABBOH A A. A restrictive Padé approximation for the solution of the generalized Fisher and Burger-Fisher equations[J]. Applied Mathematics and Computation, 2004, 154(1):203-210.
[8] BRATSOS A G, KHALIQ A Q M. An exponential time differencing method of lines for Burgers-Fisher and coupled Burgers equations[J]. Journal of Computational and Applied Mathematics, 2019, 356:182-197.
[9] WASIM I, ABBAS M, AMIN M. Hybrid B-spline collocation method for solving the generalized Burgers-Fisher and Burgers-Huxley equations[J]. Mathematical Problems in Engineering, 2018, 2018:1-18.
[10] WAZWAZ A M. The tanh method for generalized forms of nonlinear heat conduction and Burgers-Fisher equations[J]. Applied Mathematics and Computation, 2005, 169(1):321-338.
[11] WAZWAZ A M. The tanh-coth method for solitons and kink solutions for nonlinear parabolic equations[J]. Applied Mathematics and Computation, 2007, 188(2):1467-1475.
[12] MOGHIMI M, HEJAZI F S A. Variational iteration method for solving generalized Burger-Fisher and Burger equations[J]. Chaos, Solitons & Fractals, 2007, 33(5):1756-1761.
[13] FAHMY E S. Travelling wave solutions for some time-delayed equations through factorizations[J]. Chaos, Solitons & Fractals, 2008, 38(4):1209-1216.
[14] GOLBABAI A, JAVIDI M. A spectral domain decomposition approach for the generalized Burgers-Fisher equation[J]. Chaos, Solitons & Fractals, 2009, 39(1):385-392.
[15] LI X, WANG D, SAEED T. Multi-scale numerical approach to the polymer filling process in the weld line region[J]. Facta Universitatis, Series: Mechanical Engineering, 2022, 20(2):363-380.
[16] 周家全,孙应德,张永胜.Burgers方程的非协调特征有限元方法[J].山东大学学报(理学版),2012,47(12):103-108. ZHOU Jiaquan, SUN Yingde, ZHANG Yongsheng. A nonconforming characteristic finite element method for Burgers equations[J]. Journal of Shandong University(Natural Science), 2012, 47(12):103-108.
[17] BELLMAN R, KASHEF B G, CASTI J. Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations[J]. Journal of Computational Physics, 1972, 10(1):40-52.
[18] BERT C W, MALIK M. Differential quadrature method in computational mechanics: a review[J]. Applied Mechanics Reviews, 1996, 49(1):1-28.
[19] JIWARI R, SINGH S, KUMAR A. Numerical simulation to capture the pattern formation of coupled reaction-diffusion models[J]. Chaos, Solitons & Fractals, 2017, 103:422-439.
[20] ARORA G, JOSHI V. A computational approach for one and two dimensional Fishers equation using quadrature technique[J]. American Journal of Mathematical and Management Sciences, 2021, 40(2):145-162.
[21] SHU C. Differential quadrature and its application in engineering[M]. New York: Springer, 2000.
[22] KORKMAZ A, DAG(·overI). Shock wave simulations using sinc differential quadrature method[J]. Engineering Computations, 2011, 28(6):654-674.
[23] KORKMAZ A, DAG(·overI). A differential quadrature algorithm for simulations of nonlinear Schrödinger equation[J]. Computers & Mathematics with Applications, 2008, 56(9):2222-2234.
[24] SARI M. Differential quadrature solutions of the generalized Burgers-Fisher equation with a strong stability preserving high-order time integration[J]. Mathematical and Computational Applications, 2011, 16(2):477-486.
[25] SARI M, GÜRARSLAN G. Numerical solutions of the generalized Burgers-Huxley equation by a differential quadrature method[J]. Mathematical Problems in Engineering, 2009, 2009:1-11.
[26] JIWARI R, PANDIT S, MITTAL R C. A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions[J]. Applied Mathematics and Computation, 2012, 218(13):7279-7294.
[27] GOTTLIEB S, SHU C W, TADMOR E. Strong stability-preserving high-order time discretization methods[J]. SIAM Review, 2001, 43(1):89-112.
[28] TOMASIELLO S. Stability and accuracy of the iterative differential quadrature method[J]. International Journal for Numerical Methods in Engineering, 2003, 58(9):1277-1296.
[29] TOMASIELLO S. Numerical stability of DQ solutions of wave problems[J]. Numerical Algorithms, 2011, 57(3):289-312.
[30] JAIN M K. Numerical solution of differential equations[M]. 2nd ed. New York:Wiley, 1983.
[31] WANG K L, HE C H. A remark on Wangs fractal variational principle[J]. Fractals, 2019, 27(8):195-198.
[1] 郭鹏,张磊,王小云,孙小伟. 几个特殊类型非线性方程的显式精确解[J]. J4, 2012, 47(12): 115-120.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!