《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (3): 33-40.doi: 10.6040/j.issn.1671-9352.0.2023.163
韩琦,夏鑫洲
HAN Qi, XIA Xinzhou
摘要: 目前关于利率波动率指数的研究是在利率衍生品价格模型的基础上构造的,为了进一步扩展利率隐含波动率指数的应用范围,在利率波动模型的基础上研究收益率数据信息中隐含的随机波动率的性质。基于2021年1月至2023年2月的国债收益率数据,通过马尔可夫链蒙特卡罗(Markov chain Monte Carlo, MCMC)模型对收益率数据进行建模分析。结果表明:在收益率为基础的利率波动率模型中,长期利率的波动性明显低于短期利率的。本文使用国债收益率作为基础数据,相较于期权市场中的波动率指数,本文的模型不受期权市场上期权种类以及规模的影响,具有更大的适用范围。
中图分类号:
[1] 汪洋,刘腾华. 经济双循环背景下中国利率走廊机制的完善:基于欧洲中央银行的经验[J]. 世界经济研究,2022(11):3-17,135. WANG Yang, LIU Tenghua. The improvement of interest rate corridor system in China under the background of dual circulation economy: based on the experience of European central bank[J]. World Economy Studies, 2022(11):3-17,135. [2] 田琦程. 浅析利率动态模型[J]. 中国货币市场,2022(5):60-63. TIAN Qicheng. Analysis on interest rate dynamic models[J]. China Money, 2022(5):60-63. [3] VASICEK O. An equilibrium characterization of the term structure[J]. Journal of Financial Economics, 1977, 5(2):177-188. [4] DUFFIE D, FILIPOVIC D, SCHACHERMAYER W. Affine processes and applications in finance[J]. The Annals of Applied Probability, 2003, 13(3):984-1053. [5] BIKBOV R, CHERNOV M. Unspanned stochastic volatility in affine models: evidence from Eurodollar futures and options[J]. Management Science, 2009, 55(8):1292-1305. [6] JACOBS K, KAROUI L. Conditional volatility in affine term-structure models: evidence from treasury and swap markets[J]. Journal of Financial Economics, 2009, 91(3):288-318. [7] JOSLIN S. Can unspanned stochastic volatility models explain the cross section of bond volatilities?[J]. Management Science, 2018, 64(4):1707-1726. [8] LI Haitao, ZHAO Feng. Unspanned stochastic volatility: evidence from hedging interest rate derivatives[J]. The Journal of Finance, 2006, 61(1):341-378. [9] MARKELLOS R N, PSYCHOYIOS D. Interest rate volatility and risk management: evidence from CBOE treasury options[J]. The Quarterly Review of Economics and Finance, 2018, 68:190-202. [10] FRÜHWIRTH-SCHNATTER S, GEYER A L J. Bayesian estimation of econometric multi-factor Cox-Ingersoll-Ross-Models of the term structure of interest rates via MCMC methods[EB/OL].1996[2023-07-22]. https://www.wu.ac.at/fileadmin/wu/d/i/ifr/mcmc2. [11] NEAL R M. MCMC using Hamiltonian dynamics[M] //Handbook of Markov chain Monte Carlo. New York: CRC Press, 2011:113-160. [12] SALVATIER J, WIECKI T V, FONNESBECK C. Probabilistic programming in Python using PyMC3[J]. PeerJ Computer Science, 2016, 2:e55. [13] JOSLIN S, KONCHITCHKI Y. Interest rate volatility, the yield curve, and the macroeconomy[J]. Journal of Financial Economics, 2018, 128(2):344-362. [14] JOSLIN S, LE A. Interest rate volatility and no-arbitrage affine term structure models[J]. Management Science, 2021, 67(12):7391-7416. [15] 吴喜之. 贝叶斯数据分析:基于R与Python的实现[M]. 北京:中国人民大学出版社,2020. WU Xizhi. Bayesian data analysis: based on the implementation of R and Python[M]. Beijing: China Renmin University Press, 2020. |
[1] | 韩婧怡,常浩,陈祯. 4/2模型下目标给付型养老金计划的最优投资和给付策略[J]. 《山东大学学报(理学版)》, 2025, 60(3): 49-59. |
[2] | 宋春燕,李世龙. 带跳的Vasicek利率模型下的寿险净保费责任准备金[J]. 《山东大学学报(理学版)》, 2020, 55(9): 81-88. |
[3] | 陈祥利. 脆弱期权的公司价值分形定价模型[J]. J4, 2010, 45(11): 109-114. |
[4] | 孙 鹏,张 蕾,赵卫东 . 美式期权定价问题的一类有限体积数值模拟方法[J]. J4, 2007, 42(6): 1-06 . |
|