您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (3): 33-40.doi: 10.6040/j.issn.1671-9352.0.2023.163

• 金融数学 • 上一篇    下一篇

基于MCMC模型的利率随机波动率分析

韩琦,夏鑫洲   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2025-03-10
  • 作者简介:韩琦(1978— ),教授,博士生导师,博士,研究方向为金融统计. E-mail:hanqi1978@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(62261049,12261080);甘肃省自然科学基金资助项目(20JR10RA085);甘肃省教育厅高等教育创新基金资助项目(2022A-017)

Stochastic volatility analysis of interest rate based on MCMC model

HAN Qi, XIA Xinzhou   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2025-03-10

摘要: 目前关于利率波动率指数的研究是在利率衍生品价格模型的基础上构造的,为了进一步扩展利率隐含波动率指数的应用范围,在利率波动模型的基础上研究收益率数据信息中隐含的随机波动率的性质。基于2021年1月至2023年2月的国债收益率数据,通过马尔可夫链蒙特卡罗(Markov chain Monte Carlo, MCMC)模型对收益率数据进行建模分析。结果表明:在收益率为基础的利率波动率模型中,长期利率的波动性明显低于短期利率的。本文使用国债收益率作为基础数据,相较于期权市场中的波动率指数,本文的模型不受期权市场上期权种类以及规模的影响,具有更大的适用范围。

关键词: 利率模型, 随机波动率, 马尔可夫链蒙特卡罗模型, 波动率指数

Abstract: Currently, researches on the interest rate volatility index are constructed on the basis of the interest rate derivative price model. To further expand the application scope of the implied interest rate volatility index, the properties of the stochastic volatility implied in the yield data information are studied on the basis of the interest rate volatility model. Based on the yield data of government bonds from January 2021 to February 2023, the yield data are modeled and analyzed by the Markov chain Monte Carlo(MCMC)model. The results show that the volatility of the long-term interest rate is significantly lower than that of the short-term interest rate. Because this paper uses the treasury bond yield as the basic data, compared with the volatility index in the option market, the model in this paper is not affected by the type and scale of options in the option market and has a greater range of application.

Key words: interest rate model, stochastic volatility, Markov chain Monte Carlo model, volatility index

中图分类号: 

  • O29
[1] 汪洋,刘腾华. 经济双循环背景下中国利率走廊机制的完善:基于欧洲中央银行的经验[J]. 世界经济研究,2022(11):3-17,135. WANG Yang, LIU Tenghua. The improvement of interest rate corridor system in China under the background of dual circulation economy: based on the experience of European central bank[J]. World Economy Studies, 2022(11):3-17,135.
[2] 田琦程. 浅析利率动态模型[J]. 中国货币市场,2022(5):60-63. TIAN Qicheng. Analysis on interest rate dynamic models[J]. China Money, 2022(5):60-63.
[3] VASICEK O. An equilibrium characterization of the term structure[J]. Journal of Financial Economics, 1977, 5(2):177-188.
[4] DUFFIE D, FILIPOVIC D, SCHACHERMAYER W. Affine processes and applications in finance[J]. The Annals of Applied Probability, 2003, 13(3):984-1053.
[5] BIKBOV R, CHERNOV M. Unspanned stochastic volatility in affine models: evidence from Eurodollar futures and options[J]. Management Science, 2009, 55(8):1292-1305.
[6] JACOBS K, KAROUI L. Conditional volatility in affine term-structure models: evidence from treasury and swap markets[J]. Journal of Financial Economics, 2009, 91(3):288-318.
[7] JOSLIN S. Can unspanned stochastic volatility models explain the cross section of bond volatilities?[J]. Management Science, 2018, 64(4):1707-1726.
[8] LI Haitao, ZHAO Feng. Unspanned stochastic volatility: evidence from hedging interest rate derivatives[J]. The Journal of Finance, 2006, 61(1):341-378.
[9] MARKELLOS R N, PSYCHOYIOS D. Interest rate volatility and risk management: evidence from CBOE treasury options[J]. The Quarterly Review of Economics and Finance, 2018, 68:190-202.
[10] FRÜHWIRTH-SCHNATTER S, GEYER A L J. Bayesian estimation of econometric multi-factor Cox-Ingersoll-Ross-Models of the term structure of interest rates via MCMC methods[EB/OL].1996[2023-07-22]. https://www.wu.ac.at/fileadmin/wu/d/i/ifr/mcmc2.
[11] NEAL R M. MCMC using Hamiltonian dynamics[M] //Handbook of Markov chain Monte Carlo. New York: CRC Press, 2011:113-160.
[12] SALVATIER J, WIECKI T V, FONNESBECK C. Probabilistic programming in Python using PyMC3[J]. PeerJ Computer Science, 2016, 2:e55.
[13] JOSLIN S, KONCHITCHKI Y. Interest rate volatility, the yield curve, and the macroeconomy[J]. Journal of Financial Economics, 2018, 128(2):344-362.
[14] JOSLIN S, LE A. Interest rate volatility and no-arbitrage affine term structure models[J]. Management Science, 2021, 67(12):7391-7416.
[15] 吴喜之. 贝叶斯数据分析:基于R与Python的实现[M]. 北京:中国人民大学出版社,2020. WU Xizhi. Bayesian data analysis: based on the implementation of R and Python[M]. Beijing: China Renmin University Press, 2020.
[1] 韩婧怡,常浩,陈祯. 4/2模型下目标给付型养老金计划的最优投资和给付策略[J]. 《山东大学学报(理学版)》, 2025, 60(3): 49-59.
[2] 宋春燕,李世龙. 带跳的Vasicek利率模型下的寿险净保费责任准备金[J]. 《山东大学学报(理学版)》, 2020, 55(9): 81-88.
[3] 陈祥利. 脆弱期权的公司价值分形定价模型[J]. J4, 2010, 45(11): 109-114.
[4] 孙 鹏,张 蕾,赵卫东 . 美式期权定价问题的一类有限体积数值模拟方法[J]. J4, 2007, 42(6): 1-06 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 琦,赵秀恒,李国君 . 超图在树环中的嵌入问题[J]. J4, 2007, 42(10): 114 -117 .
[2] 刘建亚,展 涛 . 二次Waring-Goldbach问题[J]. J4, 2007, 42(2): 1 -18 .
[3] 田学刚, 王少英. 算子方程AXB=C的解[J]. J4, 2010, 45(6): 74 -80 .
[4] 庞观松,张黎莎,蒋盛益*,邝丽敏,吴美玲. 一种基于名词短语的检索结果多层聚类方法[J]. J4, 2010, 45(7): 39 -44 .
[5] 朱志强 许广银 许琳 连剑. 基于视频业务的病毒式移动通信交叉熵法研究[J]. J4, 2009, 44(9): 32 -34 .
[6] 史爱玲1,马明2*,郑莹2. 齐次泊松响应的客户寿命值及性质[J]. 山东大学学报(理学版), 2014, 49(03): 96 -100 .
[7] 陈翠. 加权型空间上的n阶微分复合算子[J]. J4, 2013, 48(4): 57 -59 .
[8] . B(H)上的正交可导映射[J]. J4, 2009, 44(6): 4 -6 .
[9] 李敏1,2,李歧强1. 不确定奇异时滞系统的观测器型滑模控制器[J]. 山东大学学报(理学版), 2014, 49(03): 37 -42 .
[10] 马媛媛, 孟慧丽, 徐久成, 朱玛. 基于粒计算的正态粒集下的格贴近度[J]. 山东大学学报(理学版), 2014, 49(08): 107 -110 .