《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (3): 49-59.doi: 10.6040/j.issn.1671-9352.0.2023.436
韩婧怡,常浩*,陈祯
HAN Jingyi, CHANG Hao*, CHEN Zhen
摘要: 4/2随机波动率下的目标给付型养老金(target benefit pension, TBP)计划包含在职成员和退休成员,在职成员向养老基金缴纳固定费用,退休成员从基金中领取相应养老金,退休成员的给付水平取决于基金的投资情况。假设养老金可以投资于一种无风险资产和一种股票,股票的价格过程遵循4/2随机波动率模型。运用随机最优控制理论,得到最优投资和给付调整策略的显式解,应用数值算例分析各模型参数对最优投资和给付调整策略的影响。该研究为随机波动率模型下的其他复杂投资问题的解决提供方法论基础,也为基金管理者的资产配置和风险管理提供参考依据。
中图分类号:
[1] HABERMAN S, SUNG J H. Dynamic approaches to pension funding[J]. Insurance: Mathematics and Economics, 1994, 15(2):151-162. [2] NGWIRA B, GERRARD R. Stochastic pension fund control in the presence of Poisson jumps[J]. Insurance: Mathematics and Economics, 2007, 40(2):283-292. [3] BATTOCCHIO P, MENONCIN F. Optimal pension management in a stochastic framework[J]. Insurance: Mathematics and Economics, 2004, 34(1):79-95. [4] ZHANG Ling, LI Danping, LAI Yongzeng. Equilibrium investment strategy for a defined contribution pension plan under stochastic interest rate and stochastic volatility[J]. Journal of Computational and Applied Mathematics, 2020, 368:112536. [5] GERRARD R, HABERMAN S, VIGNA E. Optimal investment choices post-retirement in a defined contribution pension scheme[J]. Insurance: Mathematics and Economics, 2004, 35(2):321-342. [6] CHANG Hao, WANG Chunfeng, FANG Zhenming, et al. Defined contribution pension planning with a stochastic interest rate and mean-reverting returns under the hyperbolic absolute risk aversion preference[J]. IMA Journal of Management Mathema-tics, 2020, 31(2):167-189. [7] CHANG Hao, LI Jiaao. Robust equilibrium strategy for DC pension plan with the return of premiums clauses in a jump-diffusion model[J]. Optimization, 2023, 72(2):463-492. [8] CHEN Lv, LI Danping, WANG Yumin, et al. The optimal cyclical design for a target benefit pension plan[J]. Journal of Pension Economics and Finance, 2023, 22(3):284-303. [9] WANG Suxin, LU Yi, SANDERS B. Optimal investment strategies and intergenerational risk sharing for target benefit pension plans[J]. Insurance: Mathematics and Economics, 2018, 80:1-14. [10] WANG Suxin, LU Yi. Optimal investment strategies and risk-sharing arrangements for a hybrid pension plan[J]. Insurance: Mathematics and Economics, 2019, 89:46-62. [11] GOLLIER C. Intergenerational risk-sharing and risk-taking of a pension fund[J]. Journal of Public Economics, 2008, 92(5/6):1463-1485. [12] CUI Jiajia, JONG D F, PONDS E. Intergenerational risk sharing within funded pension schemes[J]. Journal of Pension Economics and Finance, 2011, 10(1):1-29. [13] RONG Ximin, CHENG Tao, ZHAO Hui. Target benefit pension plan with longevity risk and intergenerational equity[J]. ASTIN Bulletin: The Journal of the IAA, 2023, 53(1):84-103. [14] LIU Zilan, ZHANG Huanying, HE Lei. Optimal assets allocation and benefit adjustment strategy with longevity risk for target benefit pension plans[J]. Journal of Industrial and Management Optimization, 2023, 19(6):3931-3951. [15] HESTON S L. A simple new formula for options with stochastic volatility[EB/OL].(1997-09-19)[2023-10-16]. https://api.semanticscholar.org/CorpusID:150914514. [16] GRASSELLI M. The 4/2 stochastic volatility model: a unified approach for the Heston and the 3/2 model[J]. Mathematical Finance, 2017, 27(4):1013-1034. [17] CHENG Y Y, ESCOBAR A M. Robust portfolio choice under the 4/2 stochastic volatility model[J]. IMA Journal of Management Mathematics, 2022, 34(1):221-256. [18] CHENG Y Y, ESCOBAR A M. Optimal investment strategy in the family of 4/2 stochastic volatility models[J]. Quantitative Finance, 2021, 21(10):1723-1751. [19] LIN Wei, LI Shenghong, LUO Xingguo, et al. Consistent pricing of VIX and equity derivatives with the 4/2 stochastic volatility plus jumps model[J]. Journal of Mathematical Analysis and Applications, 2017, 447(2):778-797. [20] WANG W Y, MURAVEY D, SHEN Y, et al. Optimal investment and reinsurance strategies under 4/2 stochastic volatility model[J]. Scandinavian Actuarial Journal, 2023, 2023(5):413-449. [21] ZHANG Yumo. Mean-variance asset-liability management under CIR interest rate and the family of 4/2 stochastic volatility models with derivative trading[J]. Journal of Industrial and Management Optimization, 2023, 19(6):4022-4063. [22] HATA H, YASUDA K. Expected power utility maximization with delay for insurers under the 4/2 stochastic volatility model[J]. Mathematical Control and Related Fields, 2024, 14(1):16-50. |
[1] | 李永明,聂彩玲,刘超,郭建华. 负超可加阵列下非参数回归函数估计的相合性[J]. 《山东大学学报(理学版)》, 2018, 53(12): 69-74. |
[2] | 张节松. 现代风险模型的扩散逼近与最优投资[J]. 山东大学学报(理学版), 2017, 52(5): 49-57. |
|