《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (10): 1-9.doi: 10.6040/j.issn.1671-9352.0.2023.225
• •
王洋
WANG Yang
摘要: 基于2×2块矩阵的块三角分裂,提出求解复对称线性方程组的块三角分裂(BTS)迭代方法及其预处理迭代方法(PBTS)。理论分析表明,在迭代参数α满足一定的条件下,BTS和PBTS迭代方法是收敛性的,给出两类方法迭代格式中理论最优参数的计算方法。数值实验结果证明BTS迭代方法和PBTS迭代方法的有效性和优越性。
中图分类号:
[1] SOMMERFELD A. Partial differential equations[M]. New York: Academic Press, 1949:1-10. [2] ARRIDGE S R. Optical tomography in medical imaging[J]. Inverse Problems, 1999, 15(2):41-93. [3] HIPTMAIR R. Finite elements in computational electromagnetism[J]. Acta Numerica, 2002, 11:237-339. [4] ARANSON I S, KRAMER L. The world of the complex Ginzburg-Landau equation[J]. Reviews of Modern Physics, 2002, 74(1):99-143. [5] KURAMOTO Y. Chemical oscillations, waves, and turbulence[M]. New York: Dover Publications, Inc, 2003:89-140. [6] SAAD Y, SCHULTZ M H. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3):856-869. [7] FREUND R W, NACHTIGAL N M. QMR: a quasi-minimal residual method for non-Hermitian linear systems[J]. Numerische Mathematik, 1991, 60(1):315-339. [8] AXELSSON O, KHCHEROV A. Real valued iterative methods for solving complex symmetric linear systems[J]. Numerical Linear Algebra with Applications, 2000, 7(4):197-218. [9] AXELSSON O, NEYTCHEVA M, AHMAD B. A comparison of iterative methods to solve complex valued linear algebraic systems[J]. Numerical Algorithms, 2014, 66(4):811-841. [10] AXELSSON O, BAI Z Z, QIU S X. A class of nested iteration schemes for linear systems with a coefficient matrix with a dominant positive definite symmetric part[J]. Numerical Algorithms, 2004, 35:351-372. [11] BAI Z Z, GOLUB G H, NG M K. Hermitian and skew-hermitian splitting methods for non-hermitian positive definite linear systems[J]. SIAM Journal on Matrix Analysis and Applications, 2003, 24(3):603-626. [12] BAI Z Z, BENZI M, CHEN F. Modified HSS iteration methods for a class of complex symmetric linear systems[J]. Computing, 2010, 87(3/4):93-111. [13] BAI Z Z, BENZI M, CHEN F. On preconditioned MHSS iteration methods for complex symmetric linear systems[J]. Numerical Algorithms, 2011, 56:297-317. [14] BAI Z Z, BENZI M, CHEN F, et al. Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems[J]. IMA Journal of Numerical Analysis, 2013, 33(1):343-369. [15] SALKUYEH D K, HEZARI D, EDALATPOUR V. Generalized successive over-relaxation iterative method for a class of complex symmetric linear system of equations[J]. International Journal of Computer Mathematics, 2015, 92(4):802-815. [16] HEZARI D, EDALATPOUR V, SALKUYEH D K. Preconditioned GSOR iterative method for a class of complex symmetric linear system of linear equations[J]. Numerical Linear Algebra with Applications, 2015, 22(4):761-776. [17] LI Xian, WEI Hongzhang, WU Yujiang. On symmetric block triangular splitting iteration method for a class of complex symmetric system of linear equations[J]. Applied Mathematics Letters, 2018, 79:131-137. [18] ZHANG Jianhua, WANG Zewen, ZHAO Jing. Preconditioned symmetric block triangular splitting iteration method for a class of complex symmetric system of linear equations[J]. Applied Mathematics Letters, 2018, 86:95-102. [19] ZHENG Qingqing, MA Changfeng. A class of triangular splitting methods for saddle point problems[J]. Journal of Computational and Applied Mathematics, 2016, 298:13-23. [20] LI Jingtao, MA Changfeng. The parameterized upper and lower triangular splitting methods for saddle point problems[J]. Numerical Algorithms, 2017, 76:413-425. [21] BAI Z Z. On preconditioned iteration methods for complex linear systems[J]. Journal of Engineering Mathematics, 2015, 93:41-60. [22] LIANG Zhaozheng, ZHANG Guofeng. On SSOR iteration method for a class of block two-by-two linear systems[J]. Numerical Algorithms, 2016, 71:655-671. [23] WU Yujiang, LI Xu, YUAN Jinyun. A non-alternating preconditioned HSS iteration method for non-Hermitian positive definite linear systems[J]. Computational and Applied Mathematics, 2017, 36(1):367-381. [24] BENZI M, BERTACCINI D. Block preconditioning of real-valued iterative algorithms for complex linear systems[J]. IMA Journal of Numerical Analysis, 2008, 28(3):598-618. [25] LI Xu, YANG Aili, WU Yujiang. Lopsided PMHSS iteration method for a class of complex symmetric linear systems[J]. Numerical Algorithms, 2014, 66(3):555-568. [26] ZHENG Qingqing, LU Linzhang. A shift-splitting preconditioned for a class of block two-by-two linear systems[J]. Applied Math Letters, 2016, 66(3):54-60. [27] 王洋, 赵彦军, 冯毅夫. 基于超松弛迭代的 MHSS 加速方法[J]. 山东大学学报(理学版), 2016, 51(8):61-65. WANG Yang, ZHAO Yanjun, FENG Yifu. On successive-overrelaxation acceleration of MHSS iteration[J]. Journal of Shandong University(Natural Science), 2016, 51(8):61-65. |
[1] | 王静红,梁丽娜,李昊康,周易. 基于注意力网络特征的社区发现算法[J]. 《山东大学学报(理学版)》, 2021, 56(9): 1-12,20. |
[2] | 郑荔平,胡敏杰,杨红和,林耀进. 基于粗糙集的协同过滤算法研究[J]. 《山东大学学报(理学版)》, 2019, 54(2): 41-50. |
[3] | 陈一鸣, 柯小红, 韩小宁, 孙艳楠, 刘立卿. 小波法求解分数阶微分方程组及其收敛性分析[J]. 山东大学学报(理学版), 2015, 50(02): 67-74. |
[4] | 王洋1,付军1,马维元2. 非埃尔米特正定线性系统的预条件NSS方法[J]. J4, 2012, 47(6): 57-62. |
[5] | 张建松1,牛海峰2. 多孔介质中可压缩混溶驱动问题的新型流线-扩散混合元方法[J]. J4, 2011, 46(12): 6-12. |
[6] | 高广花,王同科. 两点边值问题基于三次样条插值的高精度有限体积元方法[J]. J4, 2009, 44(2): 45-51. |
[7] | 郭 会,林 超 . 对流占优Sobolev方程的最小二乘特征混合有限元方法[J]. J4, 2008, 43(9): 45-50 . |
[8] | 郭 会 . 对流占优扩散方程的最小二乘特征混合有限元方法[J]. J4, 2008, 43(8): 6-10 . |
[9] | 张建松,羊丹平* . 混合边界条件下电热问题的数值分析[J]. J4, 2007, 42(8): 1-08 . |
[10] | 张建松,羊丹平 . 多孔介质中可压缩驱动问题的全离散分裂正定混合元方法[J]. J4, 2006, 41(1): 1-10 . |
[11] | 张建松,羊丹平 . 多孔介质中可压缩驱动问题的全离散分裂正定混合元方法[J]. J4, 2006, 41(1): 1-10 . |
|