《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (10): 1-9.doi: 10.6040/j.issn.1671-9352.0.2023.225
• • 下一篇
摘要:
基于2×2块矩阵的块三角分裂, 提出求解复对称线性方程组的块三角分裂(BTS)迭代方法及其预处理迭代方法(PBTS)。理论分析表明, 在迭代参数α满足一定的条件下, BTS和PBTS迭代方法是收敛性的, 给出两类方法迭代格式中理论最优参数的计算方法。数值实验结果证明BTS迭代方法和PBTS迭代方法的有效性和优越性。
中图分类号:
1 | SOMMERFELD A . Partial differential equations[M]. New York: Academic Press, 1949: 1- 10. |
2 |
ARRIDGE S R . Optical tomography in medical imaging[J]. Inverse Problems, 1999, 15 (2): 41- 93.
doi: 10.1088/0266-5611/15/2/022 |
3 |
HIPTMAIR R . Finite elements in computational electromagnetism[J]. Acta Numerica, 2002, 11, 237- 339.
doi: 10.1017/S0962492902000041 |
4 |
ARANSON I S , KRAMER L . The world of the complex Ginzburg-Landau equation[J]. Reviews of Modern Physics, 2002, 74 (1): 99- 143.
doi: 10.1103/RevModPhys.74.99 |
5 | KURAMOTO Y . Chemical oscillations, waves, and turbulence[M]. New York: Dover Publications, Inc, 2003: 89- 140. |
6 |
SAAD Y , SCHULTZ M H . GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7 (3): 856- 869.
doi: 10.1137/0907058 |
7 |
FREUND R W , NACHTIGAL N M . QMR: a quasi-minimal residual method for non-Hermitian linear systems[J]. Numerische Mathematik, 1991, 60 (1): 315- 339.
doi: 10.1007/BF01385726 |
8 |
AXELSSON O , KHCHEROV A . Real valued iterative methods for solving complex symmetric linear systems[J]. Numerical Linear Algebra with Applications, 2000, 7 (4): 197- 218.
doi: 10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO;2-S |
9 |
AXELSSON O , NEYTCHEVA M , AHMAD B . A comparison of iterative methods to solve complex valued linear algebraic systems[J]. Numerical Algorithms, 2014, 66 (4): 811- 841.
doi: 10.1007/s11075-013-9764-1 |
10 |
AXELSSON O , BAI Z Z , QIU S X . A class of nested iteration schemes for linear systems with a coefficient matrix with a dominant positive definite symmetric part[J]. Numerical Algorithms, 2004, 35, 351- 372.
doi: 10.1023/B:NUMA.0000021766.70028.66 |
11 |
BAI Z Z , GOLUB G H , NG M K . Hermitian and skew-hermitian splitting methods for non-hermitian positive definite linear systems[J]. SIAM Journal on Matrix Analysis and Applications, 2003, 24 (3): 603- 626.
doi: 10.1137/S0895479801395458 |
12 | BAI Z Z , BENZI M , CHEN F . Modified HSS iteration methods for a class of complex symmetric linear systems[J]. Computing, 2010, 87 (3/4): 93- 111. |
13 |
BAI Z Z , BENZI M , CHEN F . On preconditioned MHSS iteration methods for complex symmetric linear systems[J]. Numerical Algorithms, 2011, 56, 297- 317.
doi: 10.1007/s11075-010-9441-6 |
14 |
BAI Z Z , BENZI M , CHEN F , et al. Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems[J]. IMA Journal of Numerical Analysis, 2013, 33 (1): 343- 369.
doi: 10.1093/imanum/drs001 |
15 |
SALKUYEH D K , HEZARI D , EDALATPOUR V . Generalized successive over-relaxation iterative method for a class of complex symmetric linear system of equations[J]. International Journal of Computer Mathematics, 2015, 92 (4): 802- 815.
doi: 10.1080/00207160.2014.912753 |
16 |
HEZARI D , EDALATPOUR V , SALKUYEH D K . Preconditioned GSOR iterative method for a class of complex symmetric linear system of linear equations[J]. Numerical Linear Algebra with Applications, 2015, 22 (4): 761- 776.
doi: 10.1002/nla.1987 |
17 |
LI Xian , WEI Hongzhang , WU Yujiang . On symmetric block triangular splitting iteration method for a class of complex symmetric system of linear equations[J]. Applied Mathematics Letters, 2018, 79, 131- 137.
doi: 10.1016/j.aml.2017.12.008 |
18 |
ZHANG Jianhua , WANG Zewen , ZHAO Jing . Preconditioned symmetric block triangular splitting iteration method for a class of complex symmetric system of linear equations[J]. Applied Mathematics Letters, 2018, 86, 95- 102.
doi: 10.1016/j.aml.2018.06.024 |
19 |
ZHENG Qingqing , MA Changfeng . A class of triangular splitting methods for saddle point problems[J]. Journal of Computational and Applied Mathematics, 2016, 298, 13- 23.
doi: 10.1016/j.cam.2015.11.026 |
20 |
LI Jingtao , MA Changfeng . The parameterized upper and lower triangular splitting methods for saddle point problems[J]. Numerical Algorithms, 2017, 76, 413- 425.
doi: 10.1007/s11075-017-0263-7 |
21 |
BAI Z Z . On preconditioned iteration methods for complex linear systems[J]. Journal of Engineering Mathematics, 2015, 93, 41- 60.
doi: 10.1007/s10665-013-9670-5 |
22 |
LIANG Zhaozheng , ZHANG Guofeng . On SSOR iteration method for a class of block two-by-two linear systems[J]. Numerical Algorithms, 2016, 71, 655- 671.
doi: 10.1007/s11075-015-0015-5 |
23 |
WU Yujiang , LI Xu , YUAN Jinyun . A non-alternating preconditioned HSS iteration method for non-Hermitian positive definite linear systems[J]. Computational and Applied Mathematics, 2017, 36 (1): 367- 381.
doi: 10.1007/s40314-015-0231-6 |
24 | BENZI M , BERTACCINI D . Block preconditioning of real-valued iterative algorithms for complex linear systems[J]. IMA Journal of Numerical Analysis, 2008, 28 (3): 598- 618. |
25 |
LI Xu , YANG Aili , WU Yujiang . Lopsided PMHSS iteration method for a class of complex symmetric linear systems[J]. Numerical Algorithms, 2014, 66 (3): 555- 568.
doi: 10.1007/s11075-013-9748-1 |
26 | ZHENG Qingqing , LU Linzhang . A shift-splitting preconditioned for a class of block two-by-two linear systems[J]. Applied Math Letters, 2016, 66 (3): 54- 60. |
27 |
王洋, 赵彦军, 冯毅夫. 基于超松弛迭代的MHSS加速方法[J]. 山东大学学报(理学版), 2016, 51 (8): 61- 65.
doi: 10.6040/j.issn.1671-9352.0.2015.402 |
WANG Yang , ZHAO Yanjun , FENG Yifu . On successive-overrelaxation acceleration of MHSS iteration[J]. Journal of Shandong University (Natural Science), 2016, 51 (8): 61- 65.
doi: 10.6040/j.issn.1671-9352.0.2015.402 |
[1] | 王静红,梁丽娜,李昊康,周易. 基于注意力网络特征的社区发现算法[J]. 《山东大学学报(理学版)》, 2021, 56(9): 1-12,20. |
[2] | 郑荔平,胡敏杰,杨红和,林耀进. 基于粗糙集的协同过滤算法研究[J]. 《山东大学学报(理学版)》, 2019, 54(2): 41-50. |
[3] | 陈一鸣, 柯小红, 韩小宁, 孙艳楠, 刘立卿. 小波法求解分数阶微分方程组及其收敛性分析[J]. 山东大学学报(理学版), 2015, 50(02): 67-74. |
[4] | 王洋1,付军1,马维元2. 非埃尔米特正定线性系统的预条件NSS方法[J]. J4, 2012, 47(6): 57-62. |
[5] | 张建松1,牛海峰2. 多孔介质中可压缩混溶驱动问题的新型流线-扩散混合元方法[J]. J4, 2011, 46(12): 6-12. |
[6] | 高广花,王同科. 两点边值问题基于三次样条插值的高精度有限体积元方法[J]. J4, 2009, 44(2): 45-51. |
[7] | 郭 会,林 超 . 对流占优Sobolev方程的最小二乘特征混合有限元方法[J]. J4, 2008, 43(9): 45-50 . |
[8] | 郭 会 . 对流占优扩散方程的最小二乘特征混合有限元方法[J]. J4, 2008, 43(8): 6-10 . |
[9] | 张建松,羊丹平* . 混合边界条件下电热问题的数值分析[J]. J4, 2007, 42(8): 1-08 . |
[10] | 张建松,羊丹平 . 多孔介质中可压缩驱动问题的全离散分裂正定混合元方法[J]. J4, 2006, 41(1): 1-10 . |
[11] | 张建松,羊丹平 . 多孔介质中可压缩驱动问题的全离散分裂正定混合元方法[J]. J4, 2006, 41(1): 1-10 . |
|