您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (2): 41-50.doi: 10.6040/j.issn.1671-9352.0.2018.037

• • 上一篇    

基于粗糙集的协同过滤算法研究

郑荔平,胡敏杰,杨红和,林耀进   

  1. 闽南师范大学计算机学院, 福建 漳州 363000
  • 发布日期:2019-02-25
  • 作者简介:郑荔平(1977— ),女,硕士,讲师,研究方向为协同过滤与特征选择. E-mail:9306188@qq.com
  • 基金资助:
    国家自然科学基金资助项目(61303131);福建省教育厅科技资助项目(JAT170350);福建省教育厅科技资助项目(JAT170347)

Research on collaborative filtering algorithm based on rough set

ZHENG Li-ping, HU Min-jie, YANG Hong-he, LIN Yao-jin   

  1. School of Computer Science, Minnan Normal University, Zhangzhou 363000, Fujian, China
  • Published:2019-02-25

摘要: 协同过滤的推荐性能受限于评分矩阵中数据的稀疏性。针对这个问题,提出一种基于粗糙集的协同过滤方法,能在一定程度上缓解数据稀疏性的影响。首先进行数据预处理,即利用用户评分数量以及用户的评分值,作为用户进行分类的特征值,对用户进行分类;其次,利用粗糙集属性约简的方法剔除对用户分类影响较小的项目,生成更小的用户-项目评分矩阵,以降低数据的稀疏性和规模;最后基于约简后的数据集进行用户相似度的计算,获得目标用户真正近邻。实验结果表明,所提算法在常用评价推荐性能的指标MAE,COVERAGE,PRECISION和RECALL中显著优于COS,PCC,ADCOS,NHSM算法中的指标。

关键词: 协同过滤, 属性约简, 数据预处理, 分类标记, 粗糙集

Abstract: In collaborative filtering, the recommendation performance is limited by the data sparsity of rating matrix. To alleviate this problem, a rough set based collaborative filtering method is proposed, which is helpful to reduce the influence of the data sparsity to some extent. First, the procedure of data pre-processing is executed. As the eigenvalue for user classification, users ratings with the rating number are employed. Then, an attribute reduction approach of rough set is introduced to eliminate the item which has little effect with respect to user classification, and a smaller scale user-item rating matrix is generated to lower the data sparsity. Finally, the similarity between users is calculated based on the reducing attributes to obtain real neighbors of active users. The experimental results demonstrate that the proposed algorithm in MAE, COVERAGE, PRECISION and RECALL are significantly better than the ones of COS, PCC, ADCOS, NHSM.

Key words: collaborative filtering, attribute reduction, data preprocess, classification label, rough set

中图分类号: 

  • TP311
[1] GOLDBERG D, NICHOLS D, OKI B M, et al. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992, 35(12):61-70.
[2] RESNICK P, IACOVOU N, SUCHAK M, et al. GroupLens: an open architecture for collaborative filtering of netnews[C] // Proc of the ACM Conference on Computer Supported Cooperative Work. Chapel Hill:[s.n.] , 1994: 175-186.
[3] 杨恒宇,李慧宗,林耀进,等.协同过滤中有影响力近邻的选择[J].北京邮电大学学报,2016,39(1):29-35. YANG Hengyu, LI Huizong, LIN Yaojin, et al. Influential neighbor selection in collaborative filtering[J]. Journal of Beijing University of Posts and Telecommunications, 2016, 39(1):29-35.
[4] 张佳,林耀进,林梦雷,等.基于目标用户近邻修正的协同过滤算法[J].模式识别与人工智能,2015,28(9):802-810. ZHANG Jia, LIN Yaojin, LIN Menglei, et al. Target users neighbors modification based collaborative filtering[J]. Pattern Recognition and Artificial Intelligence, 2015, 28(9):802-810.
[5] 郭兰杰,梁吉业,赵兴旺.融合社交网络信息的协同过滤推荐算法[J].模式识别与人工智能,2016,29(3):281-288. GUO Lanjie, LIANG Jiye, ZHAO Xingwang. Collaborative filtering recommendation algorithm incorporating social network information[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(3):281-288.
[6] 康熠华.面向数据稀疏问题的协同过滤推荐算法研究[D].内蒙古:内蒙古师范大学,2016. KANG Yihua. Research on collaborative filtering recommendation algorithms for data sparsity[D]. Inner Mongolia: Inner Mongolia Normal University, 2016.
[7] BREESE J S,HECKERMAN D,KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[C] // Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. Madison: UAI, 1998: 43-52.
[8] SARWAR B, KARYPIS G, KONSTAN J, et al. Item based collaborative filtering recommendation algorighms.[C] // Proceedings of the 10th Intel World Wide WEB Conference, New York: [s.n.] , 2001: 285-295.
[9] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Science,1982, 11(5):341-356.
[10] 胡清华,于达仁.应用粗糙集计算[M].北京:科学出版社,2012: 39-61. HU Qinghua, YU Daren. Applied rough sets[M]. Beijing: Science Press, 2012: 39-61.
[11] 张佳,林耀进,林梦雷,等.基于信息熵的协同过滤算法[J].山东大学学报(工学版),2016,46(2):43-50. ZHANG Jia, LIN Yaojin, LIN Menglei, et al. Entropy-based collaborative filtering algorithm[J]. Journal of Shandong University(Engineering Science), 2016, 46(2):43-50.
[12] BOBADILLA J, ORTEGA F, HERNANDO A, et al. Recommender systems survey[J]. Knowledge-Based Systems, 2013, 46:109-132.
[13] LIU Haifeng, HU Zheng, AHMAD Mian, et al. A new user similarity model to improve the accuracy of collaborative filtering[J]. Knowledge-Based Systems, 2014, 56(3):156-166.
[1] 李金海,吴伟志,邓硕. 形式概念分析的多粒度标记理论[J]. 《山东大学学报(理学版)》, 2019, 54(2): 30-40.
[2] 李同军,黄家文,吴伟志. 基于相似关系的不完备形式背景属性约简[J]. 山东大学学报(理学版), 2018, 53(8): 9-16.
[3] 左芝翠,张贤勇,莫智文,冯林. 基于决策分类的分块差别矩阵及其求核算法[J]. 山东大学学报(理学版), 2018, 53(8): 25-33.
[4] 张恩胜. 区间集概念格属性约简的组成与结构[J]. 山东大学学报(理学版), 2018, 53(8): 17-24.
[5] 张晓,杨燕燕. 覆盖决策系统的规则提取和置信度保持的属性约简算法[J]. 《山东大学学报(理学版)》, 2018, 53(12): 120-126.
[6] 李丽,管涛,林和. 基于泛系算子的泛系混合并联粗糙集模型[J]. 山东大学学报(理学版), 2017, 52(7): 22-29.
[7] 胡谦,米据生,李磊军. 多粒度模糊粗糙近似算子的信任结构与属性约简[J]. 山东大学学报(理学版), 2017, 52(7): 30-36.
[8] 汪小燕,沈家兰,申元霞. 基于加权粒度和优势关系的程度多粒度粗糙集[J]. 山东大学学报(理学版), 2017, 52(3): 97-104.
[9] 陈雪,魏玲,钱婷. 基于AE-概念格的决策形式背景属性约简[J]. 山东大学学报(理学版), 2017, 52(12): 95-103.
[10] 杨震,司书勇,李超阳. 基于用户隐式兴趣模型的信息推荐[J]. 山东大学学报(理学版), 2017, 52(1): 15-22.
[11] 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104.
[12] 罗海燕, 吕萍, 刘林忠, 杨洵. 云环境下基于模糊粗糙AHP的企业信任综合评估[J]. 山东大学学报(理学版), 2014, 49(08): 111-117.
[13] 安秋生, 孔祥玉. 函数依赖与多值依赖的再研究[J]. 山东大学学报(理学版), 2014, 49(08): 1-5.
[14] 石素玮, 李进金, 谭安辉. 一类覆盖粗糙直觉模糊集模型的模糊粗糙度和粗糙熵[J]. 山东大学学报(理学版), 2014, 49(08): 86-91.
[15] 林姿琼, 王敬前, 祝峰. 矩阵方法计算覆盖粗糙集中最小、最大描述[J]. 山东大学学报(理学版), 2014, 49(08): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!