您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (7): 48-55.doi: 10.6040/j.issn.1671-9352.0.2023.293

• • 上一篇    

突发传染病防控区域风险评估

刘勇,王笑,杨淑姝   

  1. 西安建筑科技大学理学院, 陕西 西安 710055
  • 发布日期:2025-07-01
  • 作者简介:刘勇(1979— ),男,副教授,博士,研究方向为图论与组合优化方法及其应用. E-mail:xianliuyong@126.com
  • 基金资助:
    陕西省自然科学基金资助项目(220180140);新型城镇化研究基金-新冠肺炎应急研究专项资助项目(XG2008)

Regional risk assessment on the prevention and control of emerging infectious diseases

LIU Yong, WANG Xiao, YANG Shushu   

  1. Department of Mathematics, Xian University of Architecture and Technology, Xian 710055, Shaanxi, China
  • Published:2025-07-01

摘要: 利用图论知识定义社会群体的网络结构,构建树形疫情新发地风险传播网络,结合风险评估模型,将疫情新发地的区域分为高、中、低三个风险等级,通过数据仿真验证划分方法的合理性。构建的树形区域风险传播网络能较好的描述疫情新发地社会网络关系中的疫情传播情况,利用确定区域节点之间的相关函数和节点风险值构建的疫情分类模型,刻画发生疫情区域的周边区域的风险等级,为疫情防控工作主动性、精准性及系统性提供理论依据。

关键词: 树形社会网络, 风险评估, 关联函数, 分级分区

Abstract: Using graph theory knowledge, the social groups network structure is defined in this text. A tree-shaped risk transmission network for the newly discovered epidemic site is constructed. Combining a risk assessment model, the epidemic site is divided into three risk levels: high, medium, and low. The rationality of the classification method is verified through data simulation. The results indicate that the constructed tree-structured regional risk propagation network can effectively depict the epidemic transmission within the social network of newly affected areas. By determining the correlation functions among regional nodes and constructing a risk classification model based on node risk values, the occurrence of epidemics in surrounding areas can be scientifically characterized. This model facilitates the proactive, precise, and systematic basis for epidemic prevention and control efforts.

Key words: tree social networks, risk assessment, associative functions, hierarchical zoning

中图分类号: 

  • O157.6
[1] DEKKER A. Applying social network analysis concepts to military C4ISR architectures[J]. Connections, 2002, 24(3):93-103.
[2] ALBERT R, JEONG H, BARABASI A L. Error and attack tolerance of complex networks[J]. Nature, 2000, 406(27):378-382.
[3] 张明智,余永阳,胡晓峰,等. 虚拟社会仿真中的人际关系网络模型研究[J]. 计算机仿真,2009 26(2):14-17. ZHANG Zhizhi, YU Yongyang, HU Xiaofeng, et al. Research on interpersonal network model in virtual social simulation[J]. Computer Simulation, 2009, 26(2):14-17.
[4] MOORE C, NEWMAN M E. Epidemics and percolation in small-world networks.[J]. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 61(5):5678-5682.
[5] HUANG Q, MIN L Q, CHEN X. Susceptible-infected-recovered models with natural birth and death on complex networks[J]. Mathematical Methods in the Applied Sciences, 2015, 38(1):37-50.
[6] SUNGJIN K, EUIHO S, YOUNGJOON J. Building a knowledge brokering system using social network analysis: a case study of the Korean financial industry[J]. Expert Systems with Applications, 2011, 38(12):14633-14649.
[7] JENNIFER G, MARCY S, HEATHER K F. Evaluating form and function of regional partnerships: applying social net work analysis to the network for a healthy california, 2001—2007[J]. Journal of Nutrition Education and Behavior, 2011, 43(4):1-7.
[8] 张清华. 图论及其应用[M]. 北京:清华大学出版社,2013:1-86. ZHANG Qinghua. Graph theory and its application[M]. Beijing: Tsinghua University Press, 2013:1-86.
[9] 杜莎. 实证研究树状网络的演化博弈[D]. 上海:华东师范大学,2015. DU Sha. An empirical study on the evolutionary game of tree networks[D]. Shanghai: East China Normal University, 2015.
[10] 孙亚周. 有关树状网络的研究[D]. 天津: 河北工业大学,2010. SUN Yazhou. Research on tree network[D]. Tianjin: Hebei University of Technology, 2010.
[11] DIAKOULAKI D G, MAVROTAS L. Determining objective weights in multiple criteria problems: the critic method[J]. Computers and Operations Research, 1995, 22(7):763-770.
[12] 傅为忠,储刘平. 长三角一体化视角下制造业高质量发展评价研究——基于改进的 CRITIC-熵权法组合权重的TOPSIS评价模型[J]. 工业技术经济,2020,39(9):145-152. FU Weizhong, CHU Liuping. Research on the evaluation of high-quality development of manufacturing industry from the perspective of Yangtze River Delta integration——TOPSIS evaluation model based on improve CRITIC-entropy weight combination weighting[J]. Industrial Technology Economy, 2020, 39(9):145-152.
[13] 李伟伟,易平涛,李玲玉. 综合评价中异常值的识别及无量纲化处理方法[J]. 运筹与管理,2018,27(4):173-178. LI Weiwei, YI Pingtao, LI Lingyu. Identification of outliers and dimensionless treatment methods in comprehensive evaluation[J]. Operations Research and Management, 2018, 27(4):173-178.
[14] 程传良,纪志坚,董洁,等. 有向树图下的多智能体系统能控性分析[J]. 青岛大学学报(工程技术版),2016,31(2):7-13. CHENG Chuanling, JI Zhijian, DONG Jie, et al. Energy controllability analysis of multi-agent system under directed tree diagram[J]. Journal of Qingdao University(Engineering Technology Edition), 2016, 31(2):7-13.
[15] 熊宇峰,周刚,陈颖,等. 基于树形贝叶斯网络的配电网快速灾情推断[J]. 电网技术,2020,44(6):2222-2228. XIONG Yufeng, ZHOU Gang, CHEN Ying, et al. Rapid disaster inference of distribution network based on tree Bayesian network[J]. Power System Technology, 2020, 44(6):2222-2228.
[16] 刘缵武. 应用图论[M]. 长沙:国防科技大学出版社,2006. LIU Yuwu. Application graph theory[M]. Changsha: National University of Defense Technology Press, 2006.
[1] 屈忠锋,吴鸿华,李凡军. 基于Logistic回归的中小企业信贷风险评估与信贷策略优化建模[J]. 《山东大学学报(理学版)》, 2024, 59(8): 94-102.
[2] 阮树骅,瓮俊昊,毛麾,陈雪莲. 云安全风险评估度量模型[J]. 山东大学学报(理学版), 2018, 53(3): 71-76.
[3] 马靖杰. 空间分数阶Edwards-Wilkinson方程的数值研究[J]. J4, 2012, 47(9): 121-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!