您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (8): 94-102.doi: 10.6040/j.issn.1671-9352.0.2023.206

•   • 上一篇    下一篇

基于Logistic回归的中小企业信贷风险评估与信贷策略优化建模

屈忠锋(),吴鸿华,李凡军   

  1. 济南大学数学科学学院,山东 济南 250022
  • 收稿日期:2023-09-18 出版日期:2024-08-20 发布日期:2024-07-31
  • 作者简介:屈忠锋(1979—),男,副教授,硕士,研究方向为应用数学评估. E-mail:ss_quzf@ujn.edu.cn
  • 基金资助:
    山东省社科规划项目(21CTJJ01)

Creditrisk assessment based on Logistic regression and credit strategy optimization modeling of small and medium-sized enterprises

Zhongfeng QU(),Honghua WU,Fanjun LI   

  1. School of Mathematical Sciences, University of Jinan, Jinan 250022, Shandong, China
  • Received:2023-09-18 Online:2024-08-20 Published:2024-07-31

摘要:

为了便于银行对中小企业进行信贷风险评估,同时制定最优信贷策略,利用企业与上下游合作伙伴的银行流水信息,构建企业营业收入能力、盈利能力、客户稳定性、交易活力4个一级指标组成的风险评估指标体系;基于Logistic回归对企业信贷风险进行预测,并与误差反向传播神经网络进行了对比分析;结合违约概率与不同利率下的留存率,以银行对中小企业的最大化期望收益为目标函数,建立信贷策略优化模型;对信贷风险评估和信贷策略优化模型分别进行实证分析,验证模型的有效性。结果表明:Logistic回归具有较高的准确率和查全率,评估指标受试者工作特征曲线下面积达到0.964,适合中小企业的信贷风险预测和评估;所建立的信贷策略优化模型能确定每个贷款企业的贷款额度和贷款利率,并使银行期望收益达到最大。

关键词: 信贷风险评估, 信贷策略, Logistic回归, 期望收益, 中小企业

Abstract:

In order to facilitate banks to assess the credit risk of small and medium-sized enterprises, and formulate the optimal credit strategy, an indicator system composed of four primary risk assessment indicators, namely, business income ability, profitability, customer stability, and transaction vitality, is constructed by using the bank flow information of enterprises with upstream and downstream partners. The enterprise credit risk is predicted based on Logistic regression, and compares it with error back-propagation neural network. Combining the probability of default and the retention rate under different interest rates, taking the maximum expected return of banks on small and medium-sized enterprises as the objective function, the credit strategy optimization model is established. In order to verify the effectiveness of the model, the credit risk assessment and credit strategy optimization models are empirically analyzed. The results indicate that Logistic regression has high accuracy and recall, and the area under the curve of receiver operating characteristic reaches 0.964, which is suitable for credit risk prediction and assessment of small and medium-sized enterprises. The credit strategy optimization model can determine the loan amount and loan interest rate of each lending enterprise, and maximize the expected return of the bank.

Key words: credit risk assessment, credit strategy, Logistic regression, expected return, small and medium-sized enterprise

中图分类号: 

  • O29

表1

Logistic回归识别结果"

观测值 预测值 准确率/%
0 1
0 22 2 91.7
1 0 7 100.0

表2

123家企业的违约概率"

违约概率 [0, 0.001) [0.001, 0.1) [0.1, 0. 5) [0.5, 1]
企业数量 32 29 32 30

图1

误差反向传播神经网络结构 q1、q2—企业连续2年的营业收入;l1、l2—企业连续2年的利润;s2—企业下游客户稳定性;n—企业年交易次数;0—履约;1—违约。"

表3

BP神经网络识别结果"

观测值 预测值 准确率/%
0 1
0 22 2 91.7
1 2 5 71.4

图2

BP神经网络和Logistic回归的ROC曲线"

表4

Fisher判别分析结果"

观测值 预测值 准确率/%
0 1
0 17 7 70.8
1 0 7 100.0

表5

部分中小企业的贷款额度和贷款利率"

企业编号 月均营业额/万元 违约概率 贷款额度/万元 贷款利率
E075 17 0.000 03 16 0.050 00
E047 137 0.000 09 50 0.050 00
E061 56 0.005 20 50 0.051 60
E055 70 0.097 50 50 0.082 40
E042 67 0.119 40 50 0.090 60
E062 28 0.208 40 22 0.129 00
E088 6 0.325 30 4 0.150 00

表6

不同违约损失率下违约概率上限和银行期望收益"

违约损失率 违约概率上限 贷款企业数 期望贷款总额/万元 期望收益/万元
0.1 0.50 93 2 480 121
0.2 0.43 89 2 347 115
0.3 0.33 84 2 245 110
0.4 0.27 82 2 166 106
0.5 0.23 76 2 098 103
0.6 0.20 72 2 041 101
0.9 0.13 65 1 923 95
1 中国人民银行. 人民银行、银保监会"小微企业金融服务有关情况"新闻发布会文字实录[EB/OL]. (2019-06-25)[2024-04-22]. http://www.gov.cn/xinwen/2019-06/26/content_544116.htm.
2 ALTMAN E I . Financial ratios, discriminant analysis and the prediction of corporate bankruptcy[J]. The Journal of Finance, 1968, 23 (4): 589- 609.
doi: 10.1111/j.1540-6261.1968.tb00843.x
3 ALTMAN E I , HALDEMAN R G , NARAYANAN P . ZETATM analysis: a new model to identify bankruptcy risk of corporations[J]. Journal of Banking & Finance, 1977, 1 (1): 29- 54.
4 MERTON R C . On the pricing of corporate debt: the risk structure of interest rates[J]. The Journal of Finance, 1974, 29 (2): 449- 470.
5 MIN J H , LEE Y C . Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters[J]. Expert Systems with Applications, 2005, 28 (4): 603- 614.
doi: 10.1016/j.eswa.2004.12.008
6 KUKUK M , RÖNNBERG M . Corporate credit default models: a mixed logit approach[J]. Review of Quantitative Finance and Accounting, 2013, 40 (3): 467- 483.
doi: 10.1007/s11156-012-0281-4
7 ABID L , MASMOUDI A , ZOUARI-GHORBEL S . The consumer loan's payment default predictive model: an application of the Logistic regression and the discriminant analysis in a Tunisian commercial bank[J]. Journal of the Knowledge Economy, 2018, 9 (3): 948- 962.
doi: 10.1007/s13132-016-0382-8
8 吴世农, 卢贤义. 我国上市公司财务困境的预测模型研究[J]. 经济研究, 2001, (6): 46- 55.
WU Shinong , LU Xianyi . A study of models for predicting financial distress in China's listed companies[J]. Economic Research Journal, 2001, (6): 46- 51.
9 糜仲春, 申义, 张学农. 我国商业银行中小企业信贷风险评估体系的构建[J]. 金融论坛, 2007, (3): 21- 25.
doi: 10.3969/j.issn.1009-9190.2007.03.004
MI Zhongchun , SHEN Yi , ZHANG Xuenong . Establishing a credit risk evaluation system for SMZ enterprises by our commer cial banks[J]. Finance Forum, 2007, (3): 21- 25.
doi: 10.3969/j.issn.1009-9190.2007.03.004
10 郭妍, 张立光, 刘佳. 中小企业信贷风险度量模型研究: 基于山东省的实证分析[J]. 东岳论丛, 2013, 34 (7): 58- 61.
GUO Yan , ZHANG Liguang , LIU Jia . Research on the credit risk measurement model for small and medium enterprises: an empirical analysis based on Shandong Province[J]. Dongyue Tribune, 2013, 34 (7): 58- 61.
11 张雷. 基于混合遗传算法-支持向量机的中小型企业信用评估模型[J]. 河南师范大学学报(自然科学版), 2022, 50 (2): 79- 85.
ZHANG Lei . Credit evaluation on model of small and mediun-sized enterprices based on HGA-SVM[J]. Journal of Henan Normal University (Natural Science Edition), 2022, 50 (2): 79- 85.
12 程扬, 周大勇, 程帆, 等. 基于组合赋权法的中小微企业信贷风险量化及预测[J]. 系统工程, 2023, 41 (1): 140- 151.
doi: 10.3969/j.issn.1001-2362.2023.01.046
CHENG Yang , ZHOU Dayong , CHENG Fan , et al. Quantification forecast of credit risk of small and medium-sized enterprises based on combination weighting method[J]. Systems Engineering, 2023, 41 (1): 140- 151.
doi: 10.3969/j.issn.1001-2362.2023.01.046
13 钱慧, 梅强, 文学舟. 小微企业信贷风险评估实证研究[J]. 科技管理研究, 2013, 33 (14): 220- 223.
doi: 10.3969/j.issn.1000-7695.2013.14.050
QIAN Hui , MEI Qiang , WEN Xuezhou . Research of small and micro enterprises' credit risk evaluation[J]. Science and Technology Management Research, 2013, 33 (14): 220- 223.
doi: 10.3969/j.issn.1000-7695.2013.14.050
14 严社燕, 刘菁, 马飞杨, 等. 基于因子分析和BP神经网络的中小微企业信誉等级研究[J]. 商展经济, 2022, (15): 147- 149.
doi: 10.12245/j.issn.2096-6776.2022.15.3217
YAN Sheyan , LIU Jing , MA Feiyang , et al. Research on credit rating of small and medium sized enterprises based on factor analysis and BP neural network[J]. Trade Fair Economy, 2022, (15): 147- 149.
doi: 10.12245/j.issn.2096-6776.2022.15.3217
15 王志勇, 杨旭, 吴嘉津. 中小微企业信贷策略研究[J]. 数学建模及其应用, 2021, 10 (1): 80- 91.
WANG Zhiyong , YANG Xu , WU Jiajin . The study on crecit strategy for MSMEs[J]. Mathematical Modeling and Its Applications, 2021, 10 (1): 80- 91.
16 郁蓥荧, 鲍琴, 戴柯磊. 基于风险与收益平衡的银行信贷策略模型构建及可行性分析[J]. 经济研究导刊, 2022, (13): 95- 98.
doi: 10.3969/j.issn.1673-291X.2022.13.029
YU Yingying , BAO Qin , DAI Kelei . Construction and feasibility analysis of a bank credit strategy model based on risk and return balance[J]. Conomic Research Guided, 2022, (13): 95- 98.
doi: 10.3969/j.issn.1673-291X.2022.13.029
17 吕秀梅. 大数据金融下的中小微企业信用评估[J]. 财会月刊, 2019, (13): 22- 27.
LÜ Xiumei . Credit evaluation of small and medium-sized enterprises under big data finance[J]. Finance and Accounting Monthly, 2019, (13): 22- 27.
18 胡兆钧. 小微企业客户违约与交易流水之间关系的实证研究[D]. 上海: 上海交通大学, 2017.
HU Zhaojun. A study on the relationship between the small-sized enterprises' default and the transaction flow[D]. Shanghai: Shanghai Jiaotong University, 2017.
19 王跃. 上市民营企业信贷风险识别的双模型预测方法比较研究[D]. 包头: 内蒙古科技大学, 2020.
WANG Yue. A comparative study on the credit risk identification of private listed companies with dual model prediction method[D]. Baotou: Inner Mongolia University of Science & Technology, 2020.
20 白羽, 三郎斯基, 王晓妍, 等. 基于层次分析法量化中小微企业信贷风险[J]. 北京建筑大学学报, 2021, 37 (2): 93- 97.
BAI Yu , SANLANG Siji , WANG Xiaoyan , et al. Quantification of the credit risk of medium, small and micro-sized enterprises based on analytic hierarchy process[J]. Journal of Beijing University of Civil Engineering and Architecture, 2021, 37 (2): 93- 97.
21 朱强军. 基于改进的TOPSIS算法的企业信贷风险评价: 以中小微企业为例[J]. 长春大学学报, 2022, 32 (7): 24- 33.
doi: 10.3969/j.issn.1009-3907.2022.07.004
ZHU Qiangjun . Evaluation of enterprise credit loan risk based on the improved TOPSIS algorithm: taking small and medium-sized enterprises as an example[J]. Journal of Changchun University, 2022, 32 (7): 24- 33.
doi: 10.3969/j.issn.1009-3907.2022.07.004
[1] 张要,马盈仓,杨小飞,朱恒东,杨婷. 结合流形结构与柔性嵌入的多标签特征选择[J]. 《山东大学学报(理学版)》, 2021, 56(7): 91-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 琦,赵秀恒,李国君 . 超图在树环中的嵌入问题[J]. J4, 2007, 42(10): 114 -117 .
[2] 刘建亚,展 涛 . 二次Waring-Goldbach问题[J]. J4, 2007, 42(2): 1 -18 .
[3] 李敏1,2,李歧强1. 不确定奇异时滞系统的观测器型滑模控制器[J]. 山东大学学报(理学版), 2014, 49(03): 37 -42 .
[4] 马媛媛, 孟慧丽, 徐久成, 朱玛. 基于粒计算的正态粒集下的格贴近度[J]. 山东大学学报(理学版), 2014, 49(08): 107 -110 .
[5] 丰 晓,张顺华 . τ-平坦试验模与τ-平坦覆盖[J]. J4, 2007, 42(1): 31 -34 .
[6] 邱桃荣,王璐,熊树洁,白小明. 一种基于粒计算的知识隐藏方法[J]. J4, 2010, 45(7): 60 -64 .
[7] 薛秋芳1,2,高兴宝1*,刘晓光1. H-矩阵基于外推GaussSeidel迭代法的几个等价条件[J]. J4, 2013, 48(4): 65 -71 .
[8] 刘纪芹, . 双枝模糊集并-表现定理[J]. J4, 2006, 41(2): 7 -13 .
[9] 田学刚, 王少英. 算子方程AXB=C的解[J]. J4, 2010, 45(6): 74 -80 .
[10] 庞观松,张黎莎,蒋盛益*,邝丽敏,吴美玲. 一种基于名词短语的检索结果多层聚类方法[J]. J4, 2010, 45(7): 39 -44 .