《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (2): 14-18.doi: 10.6040/j.issn.1671-9352.0.2023.320
• • 上一篇
司慧如,姚海楼*
SI Huiru, YAO Hailou*
摘要: 在阿贝尔范畴中引入了n-超有限表现对象,利用n-超有限表现对象刻画了n-弱内射对象,得到了n-弱内射对象的一些基本性质。定义了阿贝尔范畴中对象的n-弱内射维数,讨论了短正合列中3个对象的n-弱内射维数之间的关系以及余挠理论。
中图分类号:
[1] GAO Zhenghui, WANG Fanggui. Weak injective and weak flat modules[J]. Communications in Algebra, 2015, 43(9):3857-3868. [2] AMINI M, AMZIL H, BENNIS D. Category of n-weak injective and n-weak flat modules with respect to special super presented modules[J]. Communications in Algebra, 2021, 49(11):4924-4939. [3] EILENBERG S, MAC LANE S. General theory of natural equivalences[J]. Transactions of the American Mathematical Society, 1945, 58:231-294. [4] GABRIEL P. Des categories Abeliennes[J]. Bulletin de la Société Mathématique de France, 1962, 90:323-448. [5] POPESCU N. Abelian categories with applications to rings and modules[J]. Journal of Heart Transfer, 1973, 121(2):253-260. [6] MITCHELL B. Theory of categories[M]. New York: Academic Press, 1965:1-237. [7] 章璞. 三角范畴与导出范畴[M]. 北京:科学出版社,2015. ZHANG Pu. Triangular category and derived category[J]. Beijing: Science Press, 2015. [8] BLERL R. Homological dimension of discrete groups[M]. London: Mathematics Department, Queen Mary College, 1976. [9] BREAZ S, ŽEMLICKA J. The defect functor of a homomorphism and direct unions[J]. Algebras and Representation Theory, 2016, 19(1):181-208. |
[1] | 闫美琪,姚海楼. 阿贝尔范畴黏合上的纯投射维数[J]. 《山东大学学报(理学版)》, 2021, 56(8): 1-5. |
[2] | 冯瑶瑶,姚海楼. 阿贝尔范畴粘合上的有限表现维数[J]. 《山东大学学报(理学版)》, 2019, 54(2): 89-94. |
|