您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (2): 14-18.doi: 10.6040/j.issn.1671-9352.0.2023.320

• • 上一篇    

阿贝尔范畴中的n-弱内射对象

司慧如,姚海楼*   

  1. 北京工业大学理学部数学系, 北京 100124
  • 发布日期:2025-02-14
  • 通讯作者: 姚海楼(1963— ), 男, 教授,博士生导师,博士,研究方向为代数表示论、同调代数、序代数等. E-mail:yaohl@bjut.edu.cn
  • 作者简介:司慧如(1996— ),女,硕士研究生,研究方向为代数表示论. E-mail:15237337087@163.com
  • 基金资助:
    国家自然科学基金资助项目(12071120)

n-weak injective objects in Abelian category

SI Huiru, YAO Hailou*   

  1. Department of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
  • Published:2025-02-14

摘要: 在阿贝尔范畴中引入了n-超有限表现对象,利用n-超有限表现对象刻画了n-弱内射对象,得到了n-弱内射对象的一些基本性质。定义了阿贝尔范畴中对象的n-弱内射维数,讨论了短正合列中3个对象的n-弱内射维数之间的关系以及余挠理论。

关键词: 阿贝尔范畴, n-弱内射对象, n-弱内射维数

Abstract: In the context of Abelian categories, the introduction of n-super finitely presented objects is employed to characterize n-weak injective objects, thereby some fundamental properties of n-weak injective objects are established. The n-weak injective dimensions of objects in an Abelian category is defined, and the connections between the n-weak injective dimensions of three objects in a short exact sequence and the cotorsion theory are discussed.

Key words: Abelian category, n-weak injective object, n-weak injective dimension

中图分类号: 

  • O153.3
[1] GAO Zhenghui, WANG Fanggui. Weak injective and weak flat modules[J]. Communications in Algebra, 2015, 43(9):3857-3868.
[2] AMINI M, AMZIL H, BENNIS D. Category of n-weak injective and n-weak flat modules with respect to special super presented modules[J]. Communications in Algebra, 2021, 49(11):4924-4939.
[3] EILENBERG S, MAC LANE S. General theory of natural equivalences[J]. Transactions of the American Mathematical Society, 1945, 58:231-294.
[4] GABRIEL P. Des categories Abeliennes[J]. Bulletin de la Société Mathématique de France, 1962, 90:323-448.
[5] POPESCU N. Abelian categories with applications to rings and modules[J]. Journal of Heart Transfer, 1973, 121(2):253-260.
[6] MITCHELL B. Theory of categories[M]. New York: Academic Press, 1965:1-237.
[7] 章璞. 三角范畴与导出范畴[M]. 北京:科学出版社,2015. ZHANG Pu. Triangular category and derived category[J]. Beijing: Science Press, 2015.
[8] BLERL R. Homological dimension of discrete groups[M]. London: Mathematics Department, Queen Mary College, 1976.
[9] BREAZ S, ŽEMLICKA J. The defect functor of a homomorphism and direct unions[J]. Algebras and Representation Theory, 2016, 19(1):181-208.
[1] 闫美琪,姚海楼. 阿贝尔范畴黏合上的纯投射维数[J]. 《山东大学学报(理学版)》, 2021, 56(8): 1-5.
[2] 冯瑶瑶,姚海楼. 阿贝尔范畴粘合上的有限表现维数[J]. 《山东大学学报(理学版)》, 2019, 54(2): 89-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!