您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 115-121.doi: 10.6040/j.issn.1671-9352.0.2023.391

• • 上一篇    

一类合冲无限的自内射代数

周建国1,刘雨喆1*,章超1,张亚峰2   

  1. 1.贵州大学数学与统计学院, 贵州 贵阳 550025;2.兰州财经大学信息工程学院, 甘肃 兰州 730020
  • 发布日期:2025-11-11
  • 通讯作者: 刘雨喆(1992— ),男,讲师,博士,研究方向为代数表示论与同调代数. E-mail:liuyz@gzu.edu.cn
  • 作者简介:周建国(1997— ),男,硕士研究生,研究方向为代数表示论与同调代数. E-mail:14785841291@163.com
  • 基金资助:
    国家自然科学基金资助项目(12171207,12061001);贵州大学引进人才科研启动基金资助项目(贵大人基合字(2022)53号,(2022)65号)

A syzygy-infinite self-injective algebras

ZHOU Jianguo1, LIU Yuzhe1*, ZHANG Chao1, ZHANG Yafeng2   

  1. 1. School of Mathematics and Statistics, Guizhou University, Guiyang 550025, Guizhou, China;
    2. School of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730020, Gansu, China
  • Published:2025-11-11

摘要: 对于一个定义在代数闭域k上的有限维k-代数Λ,如果Λ是合冲有限的,则利用它是n-Igusa-Todorov代数,可知其有限维数有限利用一类Nakayama代数的包络代数来指出该命题的逆不成立,即存在有限维数有限的代数,其合冲无限。

关键词: 箭图表示, 张量代数, 包络代数, 有限维数, 自内射维数

Abstract: Let Λ be a finite dimensional k-algebra with an algebraically closed field k. It is well-known that if Λ is syzygy-finite then, by using that Λ is an n-Igusa-Todorov algebra, its finitistic dimension is finite. This paper shows that the inverse of the above proposition is false by the enveloping algebra of some Nakayama algebras, that is, there exists an algebra with finite finitistic dimension such that it is a syzygy-infinite algebra.

Key words: quiver representation, tensor algebra, enveloping algebra, finitistic dimension, self-injective dimension

中图分类号: 

  • O154
[1] HOSHINO M. Algebras of finite self-injective dimension[J]. P Am Math Soc, 1991, 112(3):619-622.
[2] BASS H. Finitistic dimension and a homological generalization of semi-primary rings[J]. T Am Math Soc, 1960, 95(3):466-488.
[3] AUSLANDER M, BUCHSBAUM D A. Homological dimension in local rings[J]. Transactions of the American Mathematical Society, 1957, 85(2):390-405.
[4] SERRE J P. Sur la dimension homologique des anneaux et des modules noethériens[C] // Proceedings of the international symposium on algebraic number theory. Tokyo & Nikko: [s. n.] , 1955:175-189.
[5] EILENBERG S. Algebras of cohomologically finite dimension [J]. Commentarii Mathematici Helvetici, 1954, 28(1):310-319.
[6] HOLM T. Cartan determinants for gentle algebras [J]. Archiv Der Mathematik, 2005, 85(3):233-239.
[7] ASSEM I, SIMSON D, SKOWRONSKI A. Elements of the representation theory of associative algebras: volume 1, techniques of representation theory[M]. New York: Cambridge University Press, 2006.
[8] HAPPEL D. On the derived category of a finite-dimensional algebra[J]. Commentarii Mathematici Helvetici, 1987, 62(1):339-389.
[9] AUSLANDER M, REITEN I. On a generalized version of the nakayama conjecture[J]. Proceedings of the American Mathematical Society, 1975, 52(1):69-74.
[10] COLBY R R, FULLER K R. A note on the nakayama conjectures[J]. Tsukuba Journal of Mathematics, 1990, 14(2):343-352.
[11] HUISGEN B Z. The finitistic dimension conjectures—a tale of 3.5 decades[M] //Abelian Groups and Modules. Dordrecht: Springer Netherlands, 1995:501-517.
[12] HAPPEL D. On gorenstein algebras[M] //Representation Theory of Finite Groups and Finite-Dimensional Algebras. Basel: Birkhäuser, 1991:389-404.
[13] BELIGIANNIS A. On algebras of finite Cohen-Macaulay type[J]. Advances in Mathematics, 2011, 226(2):1973-2019.
[14] REITEN I, GEISS C. Gentle algebras are Gorenstein[C] //Representations of Algebras and Related Topics, Proceedings of the 10th International Conference.Toronto: Fields Institute for Research in Mathematical Sciences, 2005:129-133.
[15] GREEN E L, KIRKMAN E, KUZMANOVICH J. Finitistic dimensions of finite dimensional monomial algebras[J]. Journal of Algebra, 1991, 136(1):37-50.
[16] MOCHIZUKI H. Finitistic global dimension for rings[J]. Pacific Journal of Mathematics, 1965, 15(1):249-258.
[17] WEI J Q. Finitistic dimension and igusa-todorov algebras[J]. Advances in Mathematics, 2009, 222(6):2215-2226.
[18] LIU Y Z, GAO H P, HUANG Z Y. Homological dimensions of gentle algebras via geometric models[J]. Science China Mathematics, 2024, 67:733-766.
[19] HERSCHEND M. Solution to the Clebsch-Gordan problem for representations of quivers of type (~overA)n[J]. Journal of Algebra and Its Applications, 2005, 4(5):481-488.
[20] HERSCHEND M. Galois coverings and the Clebsch-Gordan problem for quiver representations[J]. Colloquium Mathematicum, 2007, 109(2):193-215.
[21] HERSCHEND M. Tensor products on quiver representations[J]. Journal of Pure and Applied Algebra, 2008, 212(2):452-469.
[22] 刘雨喆, 张亚峰. A型代数的多重张量代数表示有限的充分必要条件[J]. 中国科学: 数学, 2024, 54(1):25-38. LIU Yuzhe, ZHANG Yafeng. Sufficient and necessary conditions for the multiple tensors of algebras of type A to be representation-finite[J]. Scientia Sinica Mathematia, 2024, 54(1):25-38.
[23] MAHDOU N, TAMEKKANTE M. On Gorenstein global dimension of tensor product of algebras over a field[J]. Gulf Journal of Mathematics, 2015, 3(2):30-37.
[24] WALD B, WASCHBÜSCH J. Tame biserial algebras[J]. Journal of Algebra, 1985, 95(2):480-500.
[1] 王茜,姚海楼. 粘合中Abel范畴的小有限维数[J]. 《山东大学学报(理学版)》, 2025, 60(11): 42-47.
[2] 孙情,杨刚. 线性箭图的Gorenstein AC-表示[J]. 《山东大学学报(理学版)》, 2023, 58(8): 48-56.
[3] 李诗雨,陈晨,陈惠香. 二维非Abel李代数包络代数Ore扩张的不可约表示[J]. 《山东大学学报(理学版)》, 2022, 57(12): 75-80.
[4] 热比古丽·吐尼亚孜, 阿布都卡的·吾甫. 量子包络代数Uq(An)的Gelfand-Kirillov维数[J]. 山东大学学报(理学版), 2017, 52(10): 12-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!