您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (12): 75-80.doi: 10.6040/j.issn.1671-9352.0.2021.807

• • 上一篇    

二维非Abel李代数包络代数Ore扩张的不可约表示

李诗雨,陈晨,陈惠香*   

  1. 扬州大学数学科学学院, 江苏 扬州 225002
  • 发布日期:2022-12-05
  • 作者简介:李诗雨(1998— ),女,硕士研究生,研究方向为代数学. E-mail:894937560@qq.com*通信作者简介:陈惠香(1960— ),男,博士,教授,研究方向为代数学. E-mail:hxchen@yzu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12071412)

Irreducible representations of Ore extensions of enveloping algebra of two-dimensional non-abelian Lie algebra

LI Shi-yu, CHEN Chen, CHEN Hui-xiang*   

  1. School of Mathematical Sciences, Yangzhou University, Yangzhou 225002, Jiangsu, China
  • Published:2022-12-05

摘要: 研究特征为零代数闭域上二维非Abel李代数包络代数的三类Hopf-Ore扩张的不可约表示,分别给出这三类Ore扩张上有限维单模的结构和同构分类。

关键词: Hopf代数, 包络代数, Ore扩张, 不可约表示, 单模

Abstract: The irreducible representations of three classes of Hopf-Ore extensions of the enveloping algebra of 2-dimensional non-abelian Lie algebra over an algebraically closed field of characteristic zero are studied. The structures and isomorphism classifications of the finite dimensional simple modules over the three classes of Ore extensions are given respectively.

Key words: Hopf algebra, enveloping algebra, Ore extension, irreducible representation, simple module

中图分类号: 

  • O152.5
[1] ANDRUSKIEWITSCH N, SCHNEIDER H J. On the classification of finite-dimensional pointed Hopf algebras[J]. Annals of Mathematics, 2010, 171(1):375-417.
[2] ANGIONO I, IGLESIAS A G. Liftings of Nichols algebras of diagonal type II: all liftings are cocycle deformations[J]. Selecta Mathematics(NS), 2019, 25(1):1-95.
[3] BEATTIE M, DASCALESCU S, GRUNENFELDER L. On the number of types of finite dimenional Hopf algebras[J]. Inventiones Mathematicae, 1999, 136(1):1-7.
[4] BEATTIE M, DASCALESCU S, GRUNENFELDER L. Constructing pointed Hopf algebras by Ore extensions[J]. Journal of Algebra, 2000, 225(2):743-770.
[5] PANOV A N. Ore extensions of Hopf algebras[J]. Mathematical Notes, 2003, 74(3):401-410.
[6] KROP L, RADFORD D E. Finite-dimensional Hopf algebras of rank one in characteristic zero[J]. Journal of Algebra, 2006, 302(1):214-230.
[7] SCHEROTZKE S. Classification of pointed rank one Hopf algebras[J]. Jouenal of Algebra, 2008, 319(7):2889-2912.
[8] WANG Zhen, YOU Lan, CHEN Huixiang. Representations of Hopf-Ore extensions of group algebras and pointed Hopf algebras of rank one[J]. Algebras and Representation Theory, 2015, 18(3):801-830.
[9] WANG Dingguo, ZHANG J Jian, ZHUANG Guangbing. Primitive cohomology of Hopf algebras[J]. Journal of Algebra, 2016, 464:36-96.
[10] BROWN K A, O'HAGAN S, ZHANG J Jian, ZHUANG Guangbing. Connected Hopf algebras and iterated Ore extensions[J]. Journal of Pure and Applied Algebra, 2015, 219(6):2405-2433.
[11] ZHOU Guisong, SHEN Yuan, LU Diming. The structure of connected(graded)Hopf algebras[J]. Advances in Mathematics, 2020, 372:107-292.
[12] YOU Lan, WANG Zhen, CHEN Huixiang. Generalized Hopf-Ore extensions[J]. Journal of Algebra, 2018, 508:390-417.
[13] SWEEDLER M E. Hopf algebra[M]. New York: Benjamin, 1969.
[14] KASSEL C. Quantum groups[M]. New York: Spring-Verlag, 1995.
[15] MONTGOMERY S. Hopf algebras and their actions on rings[M]. Rhode Island: AMS, 1993.
[1] 张雨欣,郑斯航,房莹,郑慧慧,张良云. Rota-Baxter配对模系统和弯曲Rota-Baxter配对模系统[J]. 《山东大学学报(理学版)》, 2021, 56(8): 6-14.
[2] 李芳淑,李林涵,张良云. 3-莱布尼兹代数及其Rota-Baxter算子的构造[J]. 《山东大学学报(理学版)》, 2020, 55(4): 48-53.
[3] 史国栋. 群分次Hopf代数的第一基本定理与Long dimodules[J]. 《山东大学学报(理学版)》, 2020, 55(4): 25-31.
[4] 陈晨,高营营,陈惠香. 九维Taft代数上lazy 2-上闭链[J]. 《山东大学学报(理学版)》, 2020, 55(2): 73-78.
[5] 戴丽. 顶点融合范畴的Z2-扩张及应用[J]. 《山东大学学报(理学版)》, 2020, 55(12): 93-96.
[6] 乔宁,房莹,张良云. Sweedler四维Hopf代数上的Poisson代数结构[J]. 《山东大学学报(理学版)》, 2020, 55(12): 56-62.
[7] 张倩,李萱,李歆,郑慧慧,李林涵,张良云. 由Sweedler四维Hopf代数构造Rota-Baxter代数[J]. 《山东大学学报(理学版)》, 2019, 54(6): 47-52.
[8] 陈华喜, 许庆兵. Yetter-Drinfeld模范畴上 AMHH的弱基本定理[J]. 山东大学学报(理学版), 2017, 52(8): 107-110.
[9] 王伟. Unified积和smash余积的Hopf代数结构[J]. 山东大学学报(理学版), 2017, 52(2): 9-13.
[10] 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15.
[11] 鹿道伟,王珍. 双代数胚上的L-R smash积[J]. 山东大学学报(理学版), 2017, 52(12): 32-35.
[12] 热比古丽·吐尼亚孜, 阿布都卡的·吾甫. 量子包络代数Uq(An)的Gelfand-Kirillov维数[J]. 山东大学学报(理学版), 2017, 52(10): 12-17.
[13] 俞晓岚. Cocycle形变的整体维数[J]. 山东大学学报(理学版), 2016, 51(8): 39-43.
[14] 谢宗真,张孝金. 所有τ-刚性模是投射模的代数[J]. 山东大学学报(理学版), 2016, 51(2): 16-20.
[15] 郭双建,李怡铮. Hom-Yetter-Drinfeld模范畴的半单性[J]. 山东大学学报(理学版), 2016, 51(12): 17-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!