《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (12): 75-80.doi: 10.6040/j.issn.1671-9352.0.2021.807
• • 上一篇
李诗雨,陈晨,陈惠香*
LI Shi-yu, CHEN Chen, CHEN Hui-xiang*
摘要: 研究特征为零代数闭域上二维非Abel李代数包络代数的三类Hopf-Ore扩张的不可约表示,分别给出这三类Ore扩张上有限维单模的结构和同构分类。
中图分类号:
[1] ANDRUSKIEWITSCH N, SCHNEIDER H J. On the classification of finite-dimensional pointed Hopf algebras[J]. Annals of Mathematics, 2010, 171(1):375-417. [2] ANGIONO I, IGLESIAS A G. Liftings of Nichols algebras of diagonal type II: all liftings are cocycle deformations[J]. Selecta Mathematics(NS), 2019, 25(1):1-95. [3] BEATTIE M, DASCALESCU S, GRUNENFELDER L. On the number of types of finite dimenional Hopf algebras[J]. Inventiones Mathematicae, 1999, 136(1):1-7. [4] BEATTIE M, DASCALESCU S, GRUNENFELDER L. Constructing pointed Hopf algebras by Ore extensions[J]. Journal of Algebra, 2000, 225(2):743-770. [5] PANOV A N. Ore extensions of Hopf algebras[J]. Mathematical Notes, 2003, 74(3):401-410. [6] KROP L, RADFORD D E. Finite-dimensional Hopf algebras of rank one in characteristic zero[J]. Journal of Algebra, 2006, 302(1):214-230. [7] SCHEROTZKE S. Classification of pointed rank one Hopf algebras[J]. Jouenal of Algebra, 2008, 319(7):2889-2912. [8] WANG Zhen, YOU Lan, CHEN Huixiang. Representations of Hopf-Ore extensions of group algebras and pointed Hopf algebras of rank one[J]. Algebras and Representation Theory, 2015, 18(3):801-830. [9] WANG Dingguo, ZHANG J Jian, ZHUANG Guangbing. Primitive cohomology of Hopf algebras[J]. Journal of Algebra, 2016, 464:36-96. [10] BROWN K A, O'HAGAN S, ZHANG J Jian, ZHUANG Guangbing. Connected Hopf algebras and iterated Ore extensions[J]. Journal of Pure and Applied Algebra, 2015, 219(6):2405-2433. [11] ZHOU Guisong, SHEN Yuan, LU Diming. The structure of connected(graded)Hopf algebras[J]. Advances in Mathematics, 2020, 372:107-292. [12] YOU Lan, WANG Zhen, CHEN Huixiang. Generalized Hopf-Ore extensions[J]. Journal of Algebra, 2018, 508:390-417. [13] SWEEDLER M E. Hopf algebra[M]. New York: Benjamin, 1969. [14] KASSEL C. Quantum groups[M]. New York: Spring-Verlag, 1995. [15] MONTGOMERY S. Hopf algebras and their actions on rings[M]. Rhode Island: AMS, 1993. |
[1] | 张雨欣,郑斯航,房莹,郑慧慧,张良云. Rota-Baxter配对模系统和弯曲Rota-Baxter配对模系统[J]. 《山东大学学报(理学版)》, 2021, 56(8): 6-14. |
[2] | 李芳淑,李林涵,张良云. 3-莱布尼兹代数及其Rota-Baxter算子的构造[J]. 《山东大学学报(理学版)》, 2020, 55(4): 48-53. |
[3] | 史国栋. 群分次Hopf代数的第一基本定理与Long dimodules[J]. 《山东大学学报(理学版)》, 2020, 55(4): 25-31. |
[4] | 陈晨,高营营,陈惠香. 九维Taft代数上lazy 2-上闭链[J]. 《山东大学学报(理学版)》, 2020, 55(2): 73-78. |
[5] | 戴丽. 顶点融合范畴的Z2-扩张及应用[J]. 《山东大学学报(理学版)》, 2020, 55(12): 93-96. |
[6] | 乔宁,房莹,张良云. Sweedler四维Hopf代数上的Poisson代数结构[J]. 《山东大学学报(理学版)》, 2020, 55(12): 56-62. |
[7] | 张倩,李萱,李歆,郑慧慧,李林涵,张良云. 由Sweedler四维Hopf代数构造Rota-Baxter代数[J]. 《山东大学学报(理学版)》, 2019, 54(6): 47-52. |
[8] | 陈华喜, 许庆兵. Yetter-Drinfeld模范畴上 AMHH的弱基本定理[J]. 山东大学学报(理学版), 2017, 52(8): 107-110. |
[9] | 王伟. Unified积和smash余积的Hopf代数结构[J]. 山东大学学报(理学版), 2017, 52(2): 9-13. |
[10] | 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15. |
[11] | 鹿道伟,王珍. 双代数胚上的L-R smash积[J]. 山东大学学报(理学版), 2017, 52(12): 32-35. |
[12] | 热比古丽·吐尼亚孜, 阿布都卡的·吾甫. 量子包络代数Uq(An)的Gelfand-Kirillov维数[J]. 山东大学学报(理学版), 2017, 52(10): 12-17. |
[13] | 俞晓岚. Cocycle形变的整体维数[J]. 山东大学学报(理学版), 2016, 51(8): 39-43. |
[14] | 谢宗真,张孝金. 所有τ-刚性模是投射模的代数[J]. 山东大学学报(理学版), 2016, 51(2): 16-20. |
[15] | 郭双建,李怡铮. Hom-Yetter-Drinfeld模范畴的半单性[J]. 山东大学学报(理学版), 2016, 51(12): 17-23. |
|