• •

### 所有τ-刚性模是投射模的代数

1. 南京信息工程大学数学与统计学院, 江苏 南京 210044
• 收稿日期:2015-04-23 出版日期:2016-02-16 发布日期:2016-03-11
• 通讯作者: 张孝金(1983— ),男,博士,副教授,研究方向为代数表示论. E-mail:xjzhang@nuist.edu.cn E-mail:xiezongzhen3@163.com
• 作者简介:谢宗真(1992— ),女,硕士研究生,研究方向为代数表示论. E-mail:xiezongzhen3@163.com
• 基金资助:
国家自然科学基金青年基金资助项目(11101217,11401488);江苏省自然科学基金青年基金资助项目(BK20130983)

### On algebras with all τ-rigid modules projective

XIE Zong-zhen, ZHANG Xiao-jin*

1. Nanjing University of Information Science and Technology School of Mathematics and Statistics, Nanjing 210044, Jiangsu, China
• Received:2015-04-23 Online:2016-02-16 Published:2016-03-11

Abstract: For a special class of algebras, a method on constructing indecomposable τ-rigid modules from simple modules is given. As a result, it is proved that a basic and connected algebra A with radical square zero is local if all τ-rigid A-modules are projective.

• O154.2
 [1] AUSLANDER M, PLATZECK M I, REITEN I. Coxeter functions without diagrams[J]. Transactions of the American Mathematical Society, 1979, 250:1-11.[2] BRENNER S, BUTER M C R. Generalization of Bernstein-Gelfand-Ponomarev reflection functors[J]. Lecture Notes in Mathematics, 1980, 839:103-169.[3] HAPPEL D, RINGEL C M. Tilted algebras[J]. Transactions of the American Mathematical Society, 1982, 274:399-443.[4] ADACHI T, IYAMA O, REITEN I. τ-tilting theory[J]. Composito Mathematica, 2014, 150(3):415-452.[5] AIHARA T, IYAMA O. Silting mutation in triangulated categories[J]. Journal of the London Mathematical Society, 2012, 85(3):633-668.[6] IYAMA O, YOSHINO Y. Mutations in triangulated categories and rigid Cohen-Macaulay modules[J]. Inventiones Mathematicae, 2008, 172:117-168.[7] MIZUNO Y. Classifying τ-tilting modules over preprojective algebras of Dynkin type[J]. Mathematische Zeitschrift, 2014, 277(3):665-690.[8] WEI Jiaqun. τ-tilting theory and *-modules[J]. J Algebra, 2014, 414:1-5.[9] 张孝金, 张太忠. 根平方为零的Nakayama代数上的τ-倾斜模[J]. 南京大学学报(数学半年刊),2013, 30(2):247-251. ZHANG Xiaojin, ZHANG Taizhong. τ-tilting modules for Nakayama algebras with radical square zero[J]. Journal of Nanjing University Mathematical Biquarterly, 2013, 30(2):247-251.[10] AUSLANDER M, REITEN I, SMOLΦ S O. Representation theory of artin algebras[M]. Cambridge: Cambridge University Press, 1997.[11] CHEN Xiaowu. Algebras with radical square zero are either self-injective or CM-free[J]. Proceedings of the American Mathematical Society, 2012, 140:93-98.
 [1] 王志华1,2. 量子矩阵代数Mq(2)上有限维单模的一种分类[J]. J4, 2012, 47(10): 14-17. [2] 孙林. 几个特殊超图在完美图上的应用[J]. J4, 2011, 46(8): 92-94. [3] 朱虹，张影. D(kS3)的不可约表示与Grothendieck群的环结构[J]. J4, 2009, 44(12): 17-21.
Viewed
Full text

Abstract

Cited

Shared
Discussed