山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (2): 16-20.doi: 10.6040/j.issn.1671-9352.0.2015.185
谢宗真,张孝金*
XIE Zong-zhen, ZHANG Xiao-jin*
摘要: 给出了某类特殊的代数上利用单模构造不可分解τ-刚性模的方法。并由此得出所有τ-刚性模是投射模的根平方为零的本原的不可分解代数是局部代数。
中图分类号:
[1] AUSLANDER M, PLATZECK M I, REITEN I. Coxeter functions without diagrams[J]. Transactions of the American Mathematical Society, 1979, 250:1-11. [2] BRENNER S, BUTER M C R. Generalization of Bernstein-Gelfand-Ponomarev reflection functors[J]. Lecture Notes in Mathematics, 1980, 839:103-169. [3] HAPPEL D, RINGEL C M. Tilted algebras[J]. Transactions of the American Mathematical Society, 1982, 274:399-443. [4] ADACHI T, IYAMA O, REITEN I. τ-tilting theory[J]. Composito Mathematica, 2014, 150(3):415-452. [5] AIHARA T, IYAMA O. Silting mutation in triangulated categories[J]. Journal of the London Mathematical Society, 2012, 85(3):633-668. [6] IYAMA O, YOSHINO Y. Mutations in triangulated categories and rigid Cohen-Macaulay modules[J]. Inventiones Mathematicae, 2008, 172:117-168. [7] MIZUNO Y. Classifying τ-tilting modules over preprojective algebras of Dynkin type[J]. Mathematische Zeitschrift, 2014, 277(3):665-690. [8] WEI Jiaqun. τ-tilting theory and *-modules[J]. J Algebra, 2014, 414:1-5. [9] 张孝金, 张太忠. 根平方为零的Nakayama代数上的τ-倾斜模[J]. 南京大学学报(数学半年刊),2013, 30(2):247-251. ZHANG Xiaojin, ZHANG Taizhong. τ-tilting modules for Nakayama algebras with radical square zero[J]. Journal of Nanjing University Mathematical Biquarterly, 2013, 30(2):247-251. [10] AUSLANDER M, REITEN I, SMOLΦ S O. Representation theory of artin algebras[M]. Cambridge: Cambridge University Press, 1997. [11] CHEN Xiaowu. Algebras with radical square zero are either self-injective or CM-free[J]. Proceedings of the American Mathematical Society, 2012, 140:93-98. |
[1] | 王志华1,2. 量子矩阵代数Mq(2)上有限维单模的一种分类[J]. J4, 2012, 47(10): 14-17. |
[2] | 孙林. 几个特殊超图在完美图上的应用[J]. J4, 2011, 46(8): 92-94. |
[3] | 朱虹,张影. D(kS3)的不可约表示与Grothendieck群的环结构[J]. J4, 2009, 44(12): 17-21. |
|