您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (2): 16-20.doi: 10.6040/j.issn.1671-9352.0.2015.185

• • 上一篇    下一篇

所有τ-刚性模是投射模的代数

谢宗真,张孝金*   

  1. 南京信息工程大学数学与统计学院, 江苏 南京 210044
  • 收稿日期:2015-04-23 出版日期:2016-02-16 发布日期:2016-03-11
  • 通讯作者: 张孝金(1983— ),男,博士,副教授,研究方向为代数表示论. E-mail:xjzhang@nuist.edu.cn E-mail:xiezongzhen3@163.com
  • 作者简介:谢宗真(1992— ),女,硕士研究生,研究方向为代数表示论. E-mail:xiezongzhen3@163.com
  • 基金资助:
    国家自然科学基金青年基金资助项目(11101217,11401488);江苏省自然科学基金青年基金资助项目(BK20130983)

On algebras with all τ-rigid modules projective

XIE Zong-zhen, ZHANG Xiao-jin*   

  1. Nanjing University of Information Science and Technology School of Mathematics and Statistics, Nanjing 210044, Jiangsu, China
  • Received:2015-04-23 Online:2016-02-16 Published:2016-03-11

摘要: 给出了某类特殊的代数上利用单模构造不可分解τ-刚性模的方法并由此得出所有τ-刚性模是投射模的根平方为零的本原的不可分解代数是局部代数。

关键词: 单模, τ-刚性模, 根平方为零的代数

Abstract: For a special class of algebras, a method on constructing indecomposable τ-rigid modules from simple modules is given. As a result, it is proved that a basic and connected algebra A with radical square zero is local if all τ-rigid A-modules are projective.

Key words: τ-rigid modules, algebras with radical square zero, simple modules

中图分类号: 

  • O154.2
[1] AUSLANDER M, PLATZECK M I, REITEN I. Coxeter functions without diagrams[J]. Transactions of the American Mathematical Society, 1979, 250:1-11.
[2] BRENNER S, BUTER M C R. Generalization of Bernstein-Gelfand-Ponomarev reflection functors[J]. Lecture Notes in Mathematics, 1980, 839:103-169.
[3] HAPPEL D, RINGEL C M. Tilted algebras[J]. Transactions of the American Mathematical Society, 1982, 274:399-443.
[4] ADACHI T, IYAMA O, REITEN I. τ-tilting theory[J]. Composito Mathematica, 2014, 150(3):415-452.
[5] AIHARA T, IYAMA O. Silting mutation in triangulated categories[J]. Journal of the London Mathematical Society, 2012, 85(3):633-668.
[6] IYAMA O, YOSHINO Y. Mutations in triangulated categories and rigid Cohen-Macaulay modules[J]. Inventiones Mathematicae, 2008, 172:117-168.
[7] MIZUNO Y. Classifying τ-tilting modules over preprojective algebras of Dynkin type[J]. Mathematische Zeitschrift, 2014, 277(3):665-690.
[8] WEI Jiaqun. τ-tilting theory and *-modules[J]. J Algebra, 2014, 414:1-5.
[9] 张孝金, 张太忠. 根平方为零的Nakayama代数上的τ-倾斜模[J]. 南京大学学报(数学半年刊),2013, 30(2):247-251. ZHANG Xiaojin, ZHANG Taizhong. τ-tilting modules for Nakayama algebras with radical square zero[J]. Journal of Nanjing University Mathematical Biquarterly, 2013, 30(2):247-251.
[10] AUSLANDER M, REITEN I, SMOLΦ S O. Representation theory of artin algebras[M]. Cambridge: Cambridge University Press, 1997.
[11] CHEN Xiaowu. Algebras with radical square zero are either self-injective or CM-free[J]. Proceedings of the American Mathematical Society, 2012, 140:93-98.
[1] 王志华1,2. 量子矩阵代数Mq(2)上有限维单模的一种分类[J]. J4, 2012, 47(10): 14-17.
[2] 孙林. 几个特殊超图在完美图上的应用[J]. J4, 2011, 46(8): 92-94.
[3] 朱虹,张影. D(kS3)的不可约表示与Grothendieck群的环结构[J]. J4, 2009, 44(12): 17-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!