您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (2): 21-28.doi: 10.6040/j.issn.1671-9352.0.2015.190

• • 上一篇    下一篇

椭圆方程约束的最优边界控制问题的非重叠型区域分解迭代方法

刘文月,孙同军*   

  1. 山东大学数学学院, 山东 济南 250100
  • 收稿日期:2015-04-23 出版日期:2016-02-16 发布日期:2016-03-11
  • 通讯作者: 孙同军(1970— ),男,博士,副教授,研究方向为偏微分方程数值解法. E-mail:tjsun@sdu.edu.cn E-mail:1412635020@qq.com
  • 作者简介:刘文月(1988— ),女,硕士研究生,研究方向为偏微分方程最优控制问题的数值解法. E-mail:1412635020@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11301300,11271231)

Iterative non-overlapping domain decomposition method for optimal boundary control problems governed by elliptic equations

LIU Wen-yue, SUN Tong-jun*   

  1. School of Mathematics, Shandong University, Jinan 250100, Shandong, China
  • Received:2015-04-23 Online:2016-02-16 Published:2016-03-11

摘要: 研究了一类椭圆方程约束的最优边界控制问题的数值求解方法。为了避免运用传统数值方法所产生庞大的计算量,我们采用非重叠型区域分解迭代方法。 即:将求解区域Ω分解成若干个非重叠子区域,把上述的最优边界控制问题分解成这些子区域上的局部问题,这些局部问题间的内边界条件采用Robin条件。建立了求解这些局部问题的迭代格式,推导证明了迭代格式的收敛性。最后,给出一个数值算例,验证了迭代格式的有效性。

关键词: 非重叠型区域分解, Robin条件, 最优边界控制问题, 椭圆方程, 迭代方法

Abstract: A numerical method for solving optimal boundary control problems governed by elliptic equations is considered. In order to avoid large amounts of calculation produced by traditional numerical methods. An iterative non-overlapping domain decomposition method is established. The whole domain is divided into many non-overlapping subdomains, and the optimal boundary control problem is decomposed into local problems in these subdomains. Robin conditions are used to communicate the local problems on the interfaces between subdomains. The iterative scheme for solving these local problems is studied, and prove the convergence of the scheme is proved. Finally, a numerical example to prove the validity of the scheme is presented.

Key words: optimal boundary control problem, elliptic equation, Robin conditions, iterative method, non-overlapping domain decomposition method

中图分类号: 

  • O241.82
[1] LIONS J L. Optimal control of systems governed by partial differential equations[M]. New York: Springer-Verlag, 1971.
[2] NEITTAANM(¨overA)KI P, TIBA D. Optimal control of nonlinear parabolic systmes, Theroy, Algorithms and Applications[M]. Florida: CRC Press, 1994.
[3] LIU Wenbin, YAN Ningning. Adaptive finite element method for optimal control governed by PDEs[M]. Beijing: Science Press, 2008.
[4] GE Liang, LIU Wenbin, YANG Danping. Adaptive finite element approximation for a constrained optimal control problem via multi-meshes[J]. Journal of Scientific Computing, 2009, 41(2):238-255.
[5] YAN Ningning, ZHOU Zhaojie. A prior and a posteriori error analysis of edge stabilization Galerkin method for the optimal control problem governed by convection-dominated diffusion equation[J]. Journal of Computational and Applied Mathematics, 2009, 223(1):198-217.
[6] BJORSTAD P E, WIDLUND O B. Iterative methods for the solution of elliptic problems onregionsp artitionedi nto substructures[J]. SIAM Journal on Numerical Analysis, 1986, 23(6):1097-1120.
[7] BRAMBLE J H, PASCIAK J E, SCHARTA A H. The construction of preconding for elliptic problems by substructuring[J]. Mathematics of Computation, 1986, 47(175):103-134.
[8] SUN Tongjun, MA Keying. Parapllel Galerkin domain decomposition procedures for wave euqation[J]. Journal of Computational and Applied Mathematics, 2010, 233:1850-1865.
[9] MA Keying, SUN Tongjun. Galerkin domain decomposition procedures for parabolic equations on rectangular domain[J]. International Journal for Numerical Methods in Fluids, 2010, 62(4):449-472.
[10] LOINS J L, BENSOUSSAN A, GLOWINSKI R. Méthode de décomposition appliquée au contrôle optimal de systèmes distribués[C]. 5th IFIP Conference on Optimization Techniques, Lecture Notes in Computer Science. Berlin: Springer Verlag, 1973: 5.
[11] BERGGREN M, HEINKENSCHLOSS M. Parallel solution of optimal control problems by time-domain decomposition[C] // Computational Science for the 21st Century, BRISTEAU M O. New York: Wiley, 1997.
[12] LEUGERING G. Domain decomposition of optimal control problems for dynamic networks of elastic strings[J]. Computional Optimization and Applications, 2000, 16(1):5-27.
[13] LEUGERING G. Dynamic domain decomposition of optimal control problems for networks of strings and Timoshenko beams[J]. SIAM Journal on Control and Optimal, 1999, 37(6):1649-1675.
[14] BENAMOU J D. Domain decomposition, optimal control of system governed by partial differential equations, and Sysnthesis of feedback laws[J]. Journal of Optimization Theory and Applications, 1999, 102(1):15-36.
[15] BENAMOU J D. Décompositon de domaine pour le contrôle optimal de systèmes gouvernés par des equations dEvolution[J]. Comptes Rendus de lAcadémie des Sciences de Paris, Série I, 1997, 324:1065-1070.
[16] BENAMOU J D. Domain decomposition methods with coupled transmission conditions for the optimal control of systems governed by elliptic partial differential equations[J]. SIAM Journal on Numerical Analysis, 1996, 33(6):2401-2416.
[1] 陈雨佳, 杨和. 一类三阶时滞微分方程在Banach空间中的周期解的存在性[J]. 山东大学学报(理学版), 2018, 53(8): 84-94.
[2] 丁凤霞,程浩. 椭圆方程柯西问题磨光正则化参数的后验选取[J]. 山东大学学报(理学版), 2018, 53(2): 18-24.
[3] 张申贵. 四阶变指数椭圆方程Navier边值问题的多解性[J]. 山东大学学报(理学版), 2018, 53(2): 32-37.
[4] 程永宽,姚仰新,韩亚蝶. 一类含Hardy位势的椭圆方程解的存在性[J]. J4, 2013, 48(2): 62-66.
[5] 王建国,刘春晗. Banach空间积-微分方程含间断项边值问题的解[J]. J4, 2013, 48(10): 18-22.
[6] 卢拉拉,窦家维. 一类具有比例和常数脉冲收获的周期竞争系统周期解的存在性[J]. J4, 2012, 47(9): 98-104.
[7] 赵永谦1,2,梅林锋2. 一类奇异超线性椭圆方程解增长速度估计[J]. J4, 2011, 46(7): 124-126.
[8] 李娟. 带临界指数的奇异椭圆方程极小解的存在性[J]. J4, 2011, 46(2): 29-33.
[9] 李娟. 一类非齐次障碍问题的很弱解的局部可积性[J]. J4, 2010, 45(8): 66-70.
[10] . 求解变分不等式的修正三步迭代法[J]. J4, 2009, 44(6): 69-74.
[11] . 一类pLaplacian多点边值问题单调迭代正解的存在性[J]. J4, 2009, 44(5): 81-85.
[12] 董丽丽,刘衍胜 . Banach空间中二阶混合型积分-微分方程边值问题的解[J]. J4, 2008, 43(6): 49-52 .
[13] 刘洪华 . 色散方程的交替分组迭代方法[J]. J4, 2007, 42(1): 19-23 .
[14] 李磊,张玉海 . 矩阵方程X+A*XqA=I(q>0)的Hermite正定解[J]. J4, 2006, 41(4): 32-39 .
[15] 徐云飞,吕广世 . 九个几乎相等的素数的立方之和[J]. J4, 2006, 41(2): 59-62 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!