您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (8): 6-14.doi: 10.6040/j.issn.1671-9352.0.2020.619

• • 上一篇    

Rota-Baxter配对模系统和弯曲Rota-Baxter配对模系统

张雨欣,郑斯航,房莹,郑慧慧,张良云*   

  1. 南京农业大学理学院, 江苏 南京 210095
  • 发布日期:2021-08-09
  • 作者简介:张雨欣(1996— ), 女, 硕士研究生, 研究方向为Hopf代数. E-mail:2868296846@qq.com*通信作者简介:张良云(1964— ), 男, 教授, 博士生导师, 研究方向为Hopf代数. E-mail:zlyun@njau.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11571173);国家大学生实践创新训练计划资助项目(202010307062Z)

Rota-Baxter paired module system and curved Rota-Baxter paired module system

ZHANG Yu-xin, ZHENG Si-hang, FANG Ying, ZHENG Hui-hui, ZHANG Liang-yun*   

  1. College of Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
  • Published:2021-08-09

摘要: 首先引入了Rota-Baxter配对模系统以及弯曲Rota-Baxter配对模系统的概念,并由它们构造了pre-Lie 模与树状模。最后,由半单Hopf代数中的积分分别构造了Rota-Baxter 配对模系统与弯曲Rota-Baxter配对模系统。

关键词: Rota-Baxter系统, Rota-Baxter配对模系统, 弯曲Rota-Baxter配对模系统, Hopf代数, pre-Lie模, 树状模

Abstract: Firstly, the concepts of Rota-Baxter paired module system and curved Rota-Baxter paired module system are introduced. Then, pre-Lie module and dendriform module are constructed from them. Lastly, Rota-Baxter paired module system and curved Rota-Baxter paired module system are constructed from the integral in semisimple Hopf algebra.

Key words: Rota-Baxter system, Rota-Baxter paired module system, curved Rota-Baxter paired module system, Hopf algebra, pre-Lie module, dendriform module

中图分类号: 

  • O153.3
[1] ROTA G C. Baxter algebras and combinatorial identities Ⅰ,Ⅱ[J]. Bull Am Math Soc, 1969, 75:325-329; 330-334.
[2] GUO Li. An introduction to Rota-Baxter algebra[M] //Surveys of Modern Mathematics 4. Beijing: Higher Education Press, 2012.
[3] GUO Li, LIN Zongzhu. Representations and modules of Rota-Baxter algebras[J/OL]. [2019-05-04]. https://arxiv.org/abs/1905.01531, arXiv:1905.01531.
[4] ZHENG Huihui, GUO Li, ZHANG Liangyun. Rota-Baxter paired modules and their constructions from Hopf algebras[J]. J Algebra, 2020, 559:601-624.
[5] CHAPOTON F, LIVERNET M. Pre-Lie algebras and the rooted trees operad[J]. Int Math Res Not, 2001, 8:395-408.
[6] CONNES A,KREIMER D. Insertion and elimination: the doubly infinite Lie algebra of Feynman graphs[J]. Ann Henri Poincare, 2002, 3:411-433.
[7] AN Huihui, BAI Chengming. From Rota-Baxter algebras to pre-Lie algebras[J]. J Phys A, 2008, 41(1):015201, 19pp.
[8] AGUIAR M. Infinitesimal bialgebras, pre-Lie and dendriform algebras[M] //Lecture Notes in Pure and Appl Math, 237. New York: Dekker, 2004.
[9] BRZEZINSKI T. Rota-Baxter systems, dendriform algebras and covariant bialgebras[J]. J Algebra, 2016, 460:1-25.
[10] 乔宁,房莹,张良云. Sweedler四维Hopf代数上的Poisson代数结构[J].山东大学学报(理学版),2020, 55(12):56-62,68. QIAO Ning, FANG Ying, ZHANG Liangyun. The structure of Poisson algebra on Sweedlers four dimensional Hopf algebra[J]. Journal of Shandong University(Natural Science), 2020, 55(12):56-62,68.
[11] BRZEZINSKI T. Curved Rota-Baxter systems[J]. Bull Belg Math Soc Simon Stevin, 2016, 23(5):713-720.
[12] SWEEDLER M E. Hopf Algebras[J]. New York: Benjamin, 1969.
[1] 李芳淑,李林涵,张良云. 3-莱布尼兹代数及其Rota-Baxter算子的构造[J]. 《山东大学学报(理学版)》, 2020, 55(4): 48-53.
[2] 史国栋. 群分次Hopf代数的第一基本定理与Long dimodules[J]. 《山东大学学报(理学版)》, 2020, 55(4): 25-31.
[3] 陈晨,高营营,陈惠香. 九维Taft代数上lazy 2-上闭链[J]. 《山东大学学报(理学版)》, 2020, 55(2): 73-78.
[4] 戴丽. 顶点融合范畴的Z2-扩张及应用[J]. 《山东大学学报(理学版)》, 2020, 55(12): 93-96.
[5] 乔宁,房莹,张良云. Sweedler四维Hopf代数上的Poisson代数结构[J]. 《山东大学学报(理学版)》, 2020, 55(12): 56-62.
[6] 张倩,李萱,李歆,郑慧慧,李林涵,张良云. 由Sweedler四维Hopf代数构造Rota-Baxter代数[J]. 《山东大学学报(理学版)》, 2019, 54(6): 47-52.
[7] 陈华喜, 许庆兵. Yetter-Drinfeld模范畴上 AMHH的弱基本定理[J]. 山东大学学报(理学版), 2017, 52(8): 107-110.
[8] 王伟. Unified积和smash余积的Hopf代数结构[J]. 山东大学学报(理学版), 2017, 52(2): 9-13.
[9] 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15.
[10] 鹿道伟,王珍. 双代数胚上的L-R smash积[J]. 山东大学学报(理学版), 2017, 52(12): 32-35.
[11] 俞晓岚. Cocycle形变的整体维数[J]. 山东大学学报(理学版), 2016, 51(8): 39-43.
[12] 郭双建,李怡铮. Hom-Yetter-Drinfeld模范畴的半单性[J]. 山东大学学报(理学版), 2016, 51(12): 17-23.
[13] 贾玲, 陈笑缘. Yetter-Drinfeld Hopf代数的对偶定理[J]. 山东大学学报(理学版), 2015, 50(12): 98-101.
[14] 游弥漫, 赵晓凡. Monoidal Hom-Hopf代数上的对角交叉积[J]. 山东大学学报(理学版), 2015, 50(12): 76-80.
[15] 鹿道伟, 张晓辉. G-余分次乘子Hopf代数的Ore扩张[J]. 山东大学学报(理学版), 2015, 50(10): 52-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!