您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (12): 32-35.doi: 10.6040/j.issn.1671-9352.0.2017.202

• • 上一篇    下一篇

双代数胚上的L-R smash积

鹿道伟,王珍   

  1. 济宁学院数学系, 山东 曲阜 273155
  • 收稿日期:2017-05-08 出版日期:2017-12-20 发布日期:2017-12-22
  • 作者简介:鹿道伟(1987— ), 男, 博士, 讲师, 研究方向为Hopf代数. E-mail:ludaowei620@sina.com
  • 基金资助:
    山东省自然科学基金资助项目(ZR2017PA001;ZR2014AL007);山东省高校科技计划项目(J14LI11)

L-R smash product for bialgebroids

LU Dao-wei, WANG Zhen   

  1. Department of Mathematics, Jining University, Qufu 273155, Shandong, China
  • Received:2017-05-08 Online:2017-12-20 Published:2017-12-22

摘要: 构造出双代数胚上的L-R smash积, 并给出例子。 作为应用, 证明了双代数胚上的双边smash积事实上为L-R smash积。

关键词: 双代数胚, L-R smash积, Hopf代数胚, 双边smash积

Abstract: The L-R smash product for the bialgebroid is constructed, and examples are given. As an application, it is proved that two-sided smash product is actually an L-R smash product.

Key words: bialgebroid, two-sided smash product, Hopf algebroid, L-R smash product

中图分类号: 

  • O153.3
[1] BIELIAVSKY P, BONNEAU P, MAEDA Y. Universal deformation formulae, symplectic Lie groups and symmetric spaces[J]. Pacific Journal of Mathematics, 2003, 230:41-58.
[2] BIELIAVSKY P, BONNEAU P, MAEDA Y. Universal deformation formulae for three-dimensional solvable Lie groups[C] // Quantum Field Theory and Noncommutative Geometry: Lecture Notes in Phys, Vol 662. Berlin: Springer, 2005: 127-141.
[3] BONNEAU P, GERSTENHABER M, GIAQUINTO A, et al. Quantum groups and deformation quantization: explicit approaches and implicit aspects[J]. J Math Phys, 2004, 45:3703-3741.
[4] BONNEAU P, STERNHEIMER D. Topological Hopf algebras, quantum groups and deformation quantization[C] // Hopf Algebras in Noncommutative Geometry and Physics: Lecture Notes in Pure and Appl Math, Vol 239. New York: Marcel Dekker, 2005: 55-70.
[5] PANAITE F, VAN OYSTAEYEN F. L-R smash product for(quasi-)Hopf algebras[J]. J Algebra, 2007, 309:168-191.
[6] LU J H. Hopf algebroids and quantum groupoids[J]. Internat J Math, 1996, 7:47-70.
[7] CHEN Q, WANG D. A duality theorem for L-R crossed product[J]. Filomat, 2016, 30: 1305-1313.
[8] KADISONA L, SZLACHANYI K. Bialgebroid actions on depth two extensions and duality[J]. Adv Math, 2003, 179:75-121.
[1] 周楠,张涛,鹿道伟. Monoidal Hom-双代数上的L-R-smash积[J]. 山东大学学报(理学版), 2017, 52(2): 5-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!