您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (2): 73-78.doi: 10.6040/j.issn.1671-9352.0.2019.453

• • 上一篇    

九维Taft代数上lazy 2-上闭链

陈晨1,高营营2,陈惠香1*   

  1. 1. 扬州大学数学科学学院, 江苏 扬州 225002;2.宿迁市苏州外国语学校, 江苏 宿迁 233800
  • 发布日期:2020-02-14
  • 作者简介:陈晨(1995— ),男,硕士研究生,研究方向为代数学. E-mail:836027736@qq.com*通信作者简介:陈惠香(1960— ),男,博士,教授,研究方向为代数学. E-mail:hxchen@yzu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11571298)

Lazy 2-cocycles on 9-dimensional Taft algebra

CHEN Chen1, GAO Ying-ying2, CHEN Hui-xiang1*   

  1. 1. College of Mathematical Sciences, Yangzhou University, Yangzhou 225002, Jiangsu, China;
    2. Suqian Suzhou Foreign Language School, Suqian 233800, Jiangsu, China
  • Published:2020-02-14

摘要: 研究九维Taft代数上正规的lazy 2-上闭链,给出所有这些2-上闭链的结构,证明九维Taft代数上每个正规的lazy 2-上闭链恰好由一个纯量参数确定,且九维Taft代数上全体正规的lazy 2-上闭链关于卷积所构成的乘法群同构于基础域加法群。

关键词: Hopf代数, Taft代数, 2-上闭链, 正规2-上闭链, lazy 2-上闭链

Abstract: The normal lazy 2-cocycles on 9-dimensional Taft algebra are investigated. The structures of all such 2-cocycles are given. It is shown that each normal lazy 2-cocycle on 9-dimensional Taft algebra is exactly determined by one scale, and that the group of all normal lazy 2-cocycles on 9-dimensional Taft algebra with respect to convolution product is isomorphic to the additive group of the ground field.

Key words: Hopf algebra, Taft algebra, 2-cocycle, normal 2-cocycle, lazy 2-cocycle

中图分类号: 

  • O152.1
[1] DOI Y. Braided bialgebras and quadratic blalgebras[J]. Communications in Algebra, 1993, 21(5):1731-1749.
[2] DOI Y, TAKEUCH M. Multiplication alteration by two-cocycles-the quantum version[J]. Communications in Algebra, 1994, 22(14):5715-5732.
[3] ANDRUSKIEWITSCH N, ANGIONO I, GARCÍA IGLESIAS A, et al. Lifting via cocycle deformation[J]. Journal of Pure and Applied Algebra, 2014, 218(4):684-703.
[4] CHEN Huixiang. Skew pairing, cocycle deformations and double crossproducts[J]. Acta Mathematica Sinica, 1999, 15(2):225-234.
[5] CHEN Huixiang, ZHANG Yinhuo. Cocycle deformations and Brauer groups[J]. Communications in Algebra, 2007, 35(2):399-433.
[6] ANDRUSKIEWITSCH N, FANTINO F,GARCIA G A, et al. On Nichols algebras associated to simple racks[M] // Groups, Algebras and Applications: Contemp Math.[S.l.] : AMS, 2011, 537:31-56.
[7] GUILLOT P, KASSEL C, MASUOKA A. Twisting algebras using non-commutative torsors: explicit computations[J]. Mathematische Zeitschrift, 2012, 271(3/4):789-818.
[8] BICHON J, CARNOVALE G. Lazy cohomology: an analogue of the Schur multiplier for arbitrary Hopf algebras[J]. Journal of Pure and Applied Algebra, 2006, 204(3):627-665.
[9] TAFT E J. The order of the antipode of finite-dimensional Hopf algebra[J]. Proceedings of the National Academy of Sciences of the United States of America, 1971, 68(11):2631-2633.
[10] KASSEL C. Quantum groups[M]. New York: Springer-Verlag, 1995.
[11] RADFORD D E. The order of the antipode of a finite dimensional Hopf algebra is finite[J]. American Journal of Mathematics, 1976, 98(2):333.
[12] CIBILS C. A quiver quantum group[J]. Communications in Mathematical Physics, 1993, 157(3):459-477.
[13] CHEN Huixiang, VAN OYSTAEYEN F,ZHANG Yinhuo. The Green rings of Taft algebras[J]. Proceedings of the American Mathematical Society, 2014, 142(3):765-775.
[14] HUANG Hualin, CHEN Huixiang, ZHANG Pu. Generalized Taft algebras[J]. Algebra Colloqu, 2004, 11(3):313-320.
[15] LI Libin, ZHANG Yinhuo. The Green rings of the generalized Taft Hopf algebras[J]. Contemp Math, 2013, 585:275-288.
[16] CHEN Huixiang. Irreducible representations of a class of quantum doubles[J]. Journal of Algebra, 2000, 225(1):391-409.
[17] CHEN Huixiang. Representations of a class of Drinfelds doubles[J]. Communications in Algebra, 2005, 33(8):2809-2825.
[18] CHEN Huixiang, MOHAMMED H S E, LIN Weijun, et al. The projective class rings of a family of pointed Hopf algebras of rank two[J]. Bulletin of the Belgian Mathematical Society-Simon Stevin, 2016, 23(5):693-711.
[19] CHEN Huixiang, MOHAMMED H S E, SUN Hua. Indecomposable decomposition of tensor products of modules over Drinfeld doubles of Taft algebras[J]. Journal of Pure and Applied Algebra, 2017, 221(11):2752-2790.
[20] MONTGOMERY S. Hopf algebras and their actions on rings[M]. Providence, Rhode Island: AMS, 1993.
[21] SWEEDLER M E. Hopf algebra[M]. New York: Benjamin, 1969.
[1] 张倩,李萱,李歆,郑慧慧,李林涵,张良云. 由Sweedler四维Hopf代数构造Rota-Baxter代数[J]. 《山东大学学报(理学版)》, 2019, 54(6): 47-52.
[2] 陈华喜, 许庆兵. Yetter-Drinfeld模范畴上 AMHH的弱基本定理[J]. 山东大学学报(理学版), 2017, 52(8): 107-110.
[3] 王伟. Unified积和smash余积的Hopf代数结构[J]. 山东大学学报(理学版), 2017, 52(2): 9-13.
[4] 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15.
[5] 鹿道伟,王珍. 双代数胚上的L-R smash积[J]. 山东大学学报(理学版), 2017, 52(12): 32-35.
[6] 俞晓岚. Cocycle形变的整体维数[J]. 山东大学学报(理学版), 2016, 51(8): 39-43.
[7] 郭双建,李怡铮. Hom-Yetter-Drinfeld模范畴的半单性[J]. 山东大学学报(理学版), 2016, 51(12): 17-23.
[8] 贾玲, 陈笑缘. Yetter-Drinfeld Hopf代数的对偶定理[J]. 山东大学学报(理学版), 2015, 50(12): 98-101.
[9] 游弥漫, 赵晓凡. Monoidal Hom-Hopf代数上的对角交叉积[J]. 山东大学学报(理学版), 2015, 50(12): 76-80.
[10] 鹿道伟, 张晓辉. G-余分次乘子Hopf代数的Ore扩张[J]. 山东大学学报(理学版), 2015, 50(10): 52-58.
[11] 王圣祥1,2,郭双建2. 一类对称范畴上的Hom-Hopf模[J]. J4, 2013, 48(4): 40-45.
[12] 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20-22.
[13] 陈华喜1,张晓辉2,许庆兵3. Yetter-Drinfeld模范畴上的弱余模代数结构定理[J]. J4, 2013, 48(12): 14-17.
[14] 朱虹,张影. D(kS3)的不可约表示与Grothendieck群的环结构[J]. J4, 2009, 44(12): 17-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!