《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (2): 73-78.doi: 10.6040/j.issn.1671-9352.0.2019.453
• • 上一篇
陈晨1,高营营2,陈惠香1*
CHEN Chen1, GAO Ying-ying2, CHEN Hui-xiang1*
摘要: 研究九维Taft代数上正规的lazy 2-上闭链,给出所有这些2-上闭链的结构,证明九维Taft代数上每个正规的lazy 2-上闭链恰好由一个纯量参数确定,且九维Taft代数上全体正规的lazy 2-上闭链关于卷积所构成的乘法群同构于基础域加法群。
中图分类号:
[1] DOI Y. Braided bialgebras and quadratic blalgebras[J]. Communications in Algebra, 1993, 21(5):1731-1749. [2] DOI Y, TAKEUCH M. Multiplication alteration by two-cocycles-the quantum version[J]. Communications in Algebra, 1994, 22(14):5715-5732. [3] ANDRUSKIEWITSCH N, ANGIONO I, GARCÍA IGLESIAS A, et al. Lifting via cocycle deformation[J]. Journal of Pure and Applied Algebra, 2014, 218(4):684-703. [4] CHEN Huixiang. Skew pairing, cocycle deformations and double crossproducts[J]. Acta Mathematica Sinica, 1999, 15(2):225-234. [5] CHEN Huixiang, ZHANG Yinhuo. Cocycle deformations and Brauer groups[J]. Communications in Algebra, 2007, 35(2):399-433. [6] ANDRUSKIEWITSCH N, FANTINO F,GARCIA G A, et al. On Nichols algebras associated to simple racks[M] // Groups, Algebras and Applications: Contemp Math.[S.l.] : AMS, 2011, 537:31-56. [7] GUILLOT P, KASSEL C, MASUOKA A. Twisting algebras using non-commutative torsors: explicit computations[J]. Mathematische Zeitschrift, 2012, 271(3/4):789-818. [8] BICHON J, CARNOVALE G. Lazy cohomology: an analogue of the Schur multiplier for arbitrary Hopf algebras[J]. Journal of Pure and Applied Algebra, 2006, 204(3):627-665. [9] TAFT E J. The order of the antipode of finite-dimensional Hopf algebra[J]. Proceedings of the National Academy of Sciences of the United States of America, 1971, 68(11):2631-2633. [10] KASSEL C. Quantum groups[M]. New York: Springer-Verlag, 1995. [11] RADFORD D E. The order of the antipode of a finite dimensional Hopf algebra is finite[J]. American Journal of Mathematics, 1976, 98(2):333. [12] CIBILS C. A quiver quantum group[J]. Communications in Mathematical Physics, 1993, 157(3):459-477. [13] CHEN Huixiang, VAN OYSTAEYEN F,ZHANG Yinhuo. The Green rings of Taft algebras[J]. Proceedings of the American Mathematical Society, 2014, 142(3):765-775. [14] HUANG Hualin, CHEN Huixiang, ZHANG Pu. Generalized Taft algebras[J]. Algebra Colloqu, 2004, 11(3):313-320. [15] LI Libin, ZHANG Yinhuo. The Green rings of the generalized Taft Hopf algebras[J]. Contemp Math, 2013, 585:275-288. [16] CHEN Huixiang. Irreducible representations of a class of quantum doubles[J]. Journal of Algebra, 2000, 225(1):391-409. [17] CHEN Huixiang. Representations of a class of Drinfelds doubles[J]. Communications in Algebra, 2005, 33(8):2809-2825. [18] CHEN Huixiang, MOHAMMED H S E, LIN Weijun, et al. The projective class rings of a family of pointed Hopf algebras of rank two[J]. Bulletin of the Belgian Mathematical Society-Simon Stevin, 2016, 23(5):693-711. [19] CHEN Huixiang, MOHAMMED H S E, SUN Hua. Indecomposable decomposition of tensor products of modules over Drinfeld doubles of Taft algebras[J]. Journal of Pure and Applied Algebra, 2017, 221(11):2752-2790. [20] MONTGOMERY S. Hopf algebras and their actions on rings[M]. Providence, Rhode Island: AMS, 1993. [21] SWEEDLER M E. Hopf algebra[M]. New York: Benjamin, 1969. |
[1] | 张倩,李萱,李歆,郑慧慧,李林涵,张良云. 由Sweedler四维Hopf代数构造Rota-Baxter代数[J]. 《山东大学学报(理学版)》, 2019, 54(6): 47-52. |
[2] | 陈华喜, 许庆兵. Yetter-Drinfeld模范畴上 AMHH的弱基本定理[J]. 山东大学学报(理学版), 2017, 52(8): 107-110. |
[3] | 王伟. Unified积和smash余积的Hopf代数结构[J]. 山东大学学报(理学版), 2017, 52(2): 9-13. |
[4] | 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15. |
[5] | 鹿道伟,王珍. 双代数胚上的L-R smash积[J]. 山东大学学报(理学版), 2017, 52(12): 32-35. |
[6] | 俞晓岚. Cocycle形变的整体维数[J]. 山东大学学报(理学版), 2016, 51(8): 39-43. |
[7] | 郭双建,李怡铮. Hom-Yetter-Drinfeld模范畴的半单性[J]. 山东大学学报(理学版), 2016, 51(12): 17-23. |
[8] | 贾玲, 陈笑缘. Yetter-Drinfeld Hopf代数的对偶定理[J]. 山东大学学报(理学版), 2015, 50(12): 98-101. |
[9] | 游弥漫, 赵晓凡. Monoidal Hom-Hopf代数上的对角交叉积[J]. 山东大学学报(理学版), 2015, 50(12): 76-80. |
[10] | 鹿道伟, 张晓辉. G-余分次乘子Hopf代数的Ore扩张[J]. 山东大学学报(理学版), 2015, 50(10): 52-58. |
[11] | 王圣祥1,2,郭双建2. 一类对称范畴上的Hom-Hopf模[J]. J4, 2013, 48(4): 40-45. |
[12] | 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20-22. |
[13] | 陈华喜1,张晓辉2,许庆兵3. Yetter-Drinfeld模范畴上的弱余模代数结构定理[J]. J4, 2013, 48(12): 14-17. |
[14] | 朱虹,张影. D(kS3)的不可约表示与Grothendieck群的环结构[J]. J4, 2009, 44(12): 17-21. |
|