您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (2): 105-113.doi: 10.6040/j.issn.1671-9352.0.2023.400

• • 上一篇    下一篇

向量变分不等式的高阶可微性与灵敏性

马权禄1,薛小维2*   

  1. 1.重庆交通大学数学与统计学院, 重庆 400074;2.重庆文理学院数学与大数据学院, 重庆 402160
  • 出版日期:2025-02-20 发布日期:2025-02-14
  • 通讯作者: 薛小维(1982— ), 男, 副教授, 硕士生导师, 博士, 研究方向为复杂系统优化与决策. E-mail:xuexw1@126.com
  • 作者简介:马权禄(1998— ),男,硕士研究生,研究方向为复杂系统优化与决策. E-mail:2990494687@qq.com
  • 基金资助:
    重庆市教委科学技术研究资助项目(KJQN20220134);重庆市研究生联合培养基地建设资助项目(JDLHPYJD2021016);重庆市高校创新研究群体资助项目(CXQT21021)

High-order differentiability and sensitivity of vector variational inequalities

MA Quanlu1, XUE Xiaowei2*   

  1. 1. College of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China;
    2. College of Mathematics and Big Data, Chongqing University of Arts and Sciences, Chongqing 402160, China
  • Online:2025-02-20 Published:2025-02-14

摘要: 研究向量变分不等式和弱向量变分不等式两类问题的高阶可微性与灵敏性。介绍了相依锥、 高阶切集等的基本定义, 研究了与向量变分不等式密切相关的一类集值映射的高阶微分性质, 得到了其高阶导数的精确计算公式。 通过讨论集值映射与其剖面映射二者高阶导数之间的关系, 得到了向量变分不等式的高阶可微性与灵敏性。

关键词: 向量变分不等式, 高阶切集, 相依导数, 灵敏性

Abstract: The paper studies the higher-order differentiability and sensitivity of vector variational inequalities and weak vector variational inequalities. The basic definitions of contingent cones, higher-order tangent sets are introduced. The higher-order differential properties of a class of set-valued maps closely related to vector variational inequalities are studied, and the accurate calculation formula of its higher-order derivatives is obtained. By discussing the relationship between the higher-order derivatives of set-valued mapping and its profile mapping, the higher-order differentiability and sensitivity of vector variational inequalities are obtained.

Key words: vector variational inequality, higher-order tangent sets, contingent derivative, sensitivity

中图分类号: 

  • O224
[1] GIANNESSI F. Theorems of alternative, quadratic programs and complementarity problems[J]. Variational Inequalities and Complementarity Problems, 1980, 1:151-186.
[2] CHEN Guangya. Existence of solutions for a vector variational inequality: an extension of the Hartmann-Stampacchia theorem[J]. Journal of Optimization Theory and Applications, 1992, 74(3):445-456.
[3] DANIILIIDIS A, HSDJISAVVAS N. Existence theorems for vector variational inequalities[J]. Bulletin of the Australian Mathematical Society, 1996, 54(3):473-481.
[4] LEE G M, KIM D S, LEE B S, et al. Vector variational inequality as a tool for studying vector optimization problems[J]. Nonlinear Analysis: Theory, Methods Applications, 1998, 34(5):745-765.
[5] DANIELE P, MAUGERI A. Vector variational inequalities and modelling of a continuum traffic equilibrium problem[J]. Vector Variational Inequalities and Vector Equilibria, 2000.
[6] HUANG Xuexiang, YANG Xiaoqi. Further study on the Levitin-Polyak well-posedness of constrained convex vector optimization problems [J]. Nonlinear Analysis: Theory, Methods and Applications, 2012, 75(3):1341-1347.
[7] AHMAD M, VERMA R U. Existence solutions to mixed vector variational-type inequalities[J]. Advances in Nonlinear Variational Inequalities, 2013, 16(1):115-123.
[8] XUE Xiaowei, LIAO Chunmei, LI Minghua, et al. Coderivatives and Aubin properties of solution mappings for parametric vector variational inequality problems[J]. Journal of Nonlinear and Variational Analysis, 2022, 6(2):125-137.
[9] AUSLENDER A. Optimisation: Mdthodes Numdriques[M]. Paris: Masson, 1976.
[10] CHEN G Y, GOH C J, YANG X Q. On gap functions for vector variational inequalities[M] // GIANNESS F. Vector Variational Inequality and Vector Equilibria. Mathematical Theories, Boston: Kluwer Academic Publishers, 2000:55-70.
[11] LI Shengjie, YAN Hong, CHEN Guangya. Differential and sensitivity properties of gap functions for vector variational inequalities[J]. Mathematical Methods of Operations Research, 2003, 57:377-391.
[12] MENG Kaiwen, LI Shengjie. Differential and sensitivity properties of gap functions for Minty vector variational inequalities[J]. Journal of Mathematical Analysis and Applications, 2008, 337(1):386-398.
[13] LI Minghua, LI Shengjie. Second-order differential and sensitivity properties of weak vector variational inequalities[J]. Journal of Optimization Theory and Applications, 2010, 144:76-87.
[14] LI Shengjie, ZHAI Jia. Second-order asymptotic differential properties and optimality conditions for weak vector variational inequalities[J]. Optimization Letters, 2012, 6(3):503-523.
[15] PENOT J P. Higher-order optimality conditions and higher-order tangent sets[J]. SIAM Journal on Optimization, 2017, 27(4):2508-2527.
[16] KHAI T T, ANH N L H, GIANG N M T. Higher-order tangent epiderivatives and applications to duality in set-valued optimization[J]. Positivity, 2021, 25(5):1699-1720.
[17] PENOT J P. Second-order conditions for optimization problems with constraints[J]. SIAM Journal on Control and Optimization, 1998, 37(1):303-318.
[18] LEDZEWICZ U, SCHATTLER H. High-order approximations and generalized necessary conditions for optimality[J]. SIAM Journal on Control and Optimization, 1998, 37(1):33-53.
[19] KHANH P Q, TUNG N M. Higher-order Karush-Kuhn-Tucker conditions in nonsmooth optimization[J]. SIAM Journal on Optimization, 2018, 28(1):820-848.
[20] KHANH P Q, TUAN N D. Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization[J]. Journal of Optimization Theory and Applications, 2008, 139(2):243-261.
[21] BONNANS J F, SHAPIRO A. Perturbation analysis of optimization problem[M]. New York: Springer, 2000.
[22] TANINO T, SAWARAGI Y. Conjugate maps and duality in multiobjective optimization[J]. Journal of Optimization Theory and Applications, 1980, 31:473-499.
[23] LI S J, CHEN G Y, LEE G M. Minimax theorems for set-valued mappings[J]. Journal of Optimization Theory and Applications, 2000, 106(1):183-200.
[24] TANAKA T. Some minimax problems of vector-valued functions[J]. Journal of Optimization Theory and Applications, 1988, 59:505-524.
[1] 陈霞,陈纯荣. 广义向量变分不等式的间隙函数与误差界[J]. 山东大学学报(理学版), 2017, 52(4): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曲晓英,赵 静 . 含时线性Klein-Gordon方程的解[J]. J4, 2007, 42(7): 22 -26 .
[2] 王光臣 . 部分可观测信息下的线性二次非零和随机微分对策[J]. J4, 2007, 42(6): 12 -15 .
[3] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[4] 张明明,秦永彬. 基于前序关系的非确定型有穷自动机极小化算法[J]. J4, 2010, 45(7): 34 -38 .
[5] 邵国俊,茹淼焱*,孙雪莹. 聚醚接枝聚羧酸系减水剂合成工艺研究[J]. J4, 2013, 48(05): 29 -33 .
[6] 余俊英,王明文,盛 俊 . 文本分类中的类别信息特征选择方法[J]. J4, 2006, 41(3): 144 -148 .
[7] 吴修国 曾广周. 目标描述逻辑研究[J]. J4, 2009, 44(11): 68 -74 .
[8] 王太峰,袁平波,荚济民,俞能海 . 基于新闻环境的人物肖像检索[J]. J4, 2006, 41(3): 5 -10 .
[9] 刘晓蕾 王燕鸣. 有限群中的q-补及其应用[J]. J4, 2009, 44(10): 87 -90 .
[10] 郑世慧,王少辉,张国艳 . 一个动态的安全有效的群密钥协商协议[J]. J4, 2006, 41(2): 89 -93 .