《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (2): 105-113.doi: 10.6040/j.issn.1671-9352.0.2023.400
马权禄1,薛小维2*
MA Quanlu1, XUE Xiaowei2*
摘要: 研究向量变分不等式和弱向量变分不等式两类问题的高阶可微性与灵敏性。介绍了相依锥、 高阶切集等的基本定义, 研究了与向量变分不等式密切相关的一类集值映射的高阶微分性质, 得到了其高阶导数的精确计算公式。 通过讨论集值映射与其剖面映射二者高阶导数之间的关系, 得到了向量变分不等式的高阶可微性与灵敏性。
中图分类号:
[1] GIANNESSI F. Theorems of alternative, quadratic programs and complementarity problems[J]. Variational Inequalities and Complementarity Problems, 1980, 1:151-186. [2] CHEN Guangya. Existence of solutions for a vector variational inequality: an extension of the Hartmann-Stampacchia theorem[J]. Journal of Optimization Theory and Applications, 1992, 74(3):445-456. [3] DANIILIIDIS A, HSDJISAVVAS N. Existence theorems for vector variational inequalities[J]. Bulletin of the Australian Mathematical Society, 1996, 54(3):473-481. [4] LEE G M, KIM D S, LEE B S, et al. Vector variational inequality as a tool for studying vector optimization problems[J]. Nonlinear Analysis: Theory, Methods Applications, 1998, 34(5):745-765. [5] DANIELE P, MAUGERI A. Vector variational inequalities and modelling of a continuum traffic equilibrium problem[J]. Vector Variational Inequalities and Vector Equilibria, 2000. [6] HUANG Xuexiang, YANG Xiaoqi. Further study on the Levitin-Polyak well-posedness of constrained convex vector optimization problems [J]. Nonlinear Analysis: Theory, Methods and Applications, 2012, 75(3):1341-1347. [7] AHMAD M, VERMA R U. Existence solutions to mixed vector variational-type inequalities[J]. Advances in Nonlinear Variational Inequalities, 2013, 16(1):115-123. [8] XUE Xiaowei, LIAO Chunmei, LI Minghua, et al. Coderivatives and Aubin properties of solution mappings for parametric vector variational inequality problems[J]. Journal of Nonlinear and Variational Analysis, 2022, 6(2):125-137. [9] AUSLENDER A. Optimisation: Mdthodes Numdriques[M]. Paris: Masson, 1976. [10] CHEN G Y, GOH C J, YANG X Q. On gap functions for vector variational inequalities[M] // GIANNESS F. Vector Variational Inequality and Vector Equilibria. Mathematical Theories, Boston: Kluwer Academic Publishers, 2000:55-70. [11] LI Shengjie, YAN Hong, CHEN Guangya. Differential and sensitivity properties of gap functions for vector variational inequalities[J]. Mathematical Methods of Operations Research, 2003, 57:377-391. [12] MENG Kaiwen, LI Shengjie. Differential and sensitivity properties of gap functions for Minty vector variational inequalities[J]. Journal of Mathematical Analysis and Applications, 2008, 337(1):386-398. [13] LI Minghua, LI Shengjie. Second-order differential and sensitivity properties of weak vector variational inequalities[J]. Journal of Optimization Theory and Applications, 2010, 144:76-87. [14] LI Shengjie, ZHAI Jia. Second-order asymptotic differential properties and optimality conditions for weak vector variational inequalities[J]. Optimization Letters, 2012, 6(3):503-523. [15] PENOT J P. Higher-order optimality conditions and higher-order tangent sets[J]. SIAM Journal on Optimization, 2017, 27(4):2508-2527. [16] KHAI T T, ANH N L H, GIANG N M T. Higher-order tangent epiderivatives and applications to duality in set-valued optimization[J]. Positivity, 2021, 25(5):1699-1720. [17] PENOT J P. Second-order conditions for optimization problems with constraints[J]. SIAM Journal on Control and Optimization, 1998, 37(1):303-318. [18] LEDZEWICZ U, SCHATTLER H. High-order approximations and generalized necessary conditions for optimality[J]. SIAM Journal on Control and Optimization, 1998, 37(1):33-53. [19] KHANH P Q, TUNG N M. Higher-order Karush-Kuhn-Tucker conditions in nonsmooth optimization[J]. SIAM Journal on Optimization, 2018, 28(1):820-848. [20] KHANH P Q, TUAN N D. Higher-order variational sets and higher-order optimality conditions for proper efficiency in set-valued nonsmooth vector optimization[J]. Journal of Optimization Theory and Applications, 2008, 139(2):243-261. [21] BONNANS J F, SHAPIRO A. Perturbation analysis of optimization problem[M]. New York: Springer, 2000. [22] TANINO T, SAWARAGI Y. Conjugate maps and duality in multiobjective optimization[J]. Journal of Optimization Theory and Applications, 1980, 31:473-499. [23] LI S J, CHEN G Y, LEE G M. Minimax theorems for set-valued mappings[J]. Journal of Optimization Theory and Applications, 2000, 106(1):183-200. [24] TANAKA T. Some minimax problems of vector-valued functions[J]. Journal of Optimization Theory and Applications, 1988, 59:505-524. |
[1] | 陈霞,陈纯荣. 广义向量变分不等式的间隙函数与误差界[J]. 山东大学学报(理学版), 2017, 52(4): 1-5. |
|