《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (5): 25-32.doi: 10.6040/j.issn.1671-9352.0.2023.430
• 群论 • 上一篇
吉九州,周伟,杨南迎*
JI Jiuzhou, ZHOU Wei, YANG Nanying*
摘要: G是一个有限群,称G的子群A在G中是σ-置换的,如果群G有一个完全Hall σ-集H,使得对所有的H∈H和所有的x∈G,均有AH x=H xA。称G的子群H在G中是σ-置换嵌入的,如果H的每个Hall σi-子群也是G的某个σ-置换子群的Hall σi-子群,研究群G的Sylow p-子群的σ-置换嵌入子群,给出群G为p-幂零群的新的判别准则。
中图分类号:
[1] SKIBA A N. On σ-subnormal and σ-permutable subgroups of finite groups[J]. Journal of Algebra, 2015, 436:1-16. [2] SKIBA A N. A generalization of a hall theorem[J]. Journal of Algebra and Its Applications, 2016, 15(5):207-214. [3] KEGEL O H. Sylow-gruppen und subnormalteiler endlicher gruppen[J]. Mathematische Zeitschrift, 1962, 78:205-221. [4] BALLESTER B A, PEDRAZA M C. Sufficient conditions for supersolubility of finite groups[J]. Journal of Pure and Applied Algebra, 1998, 127(2):113-118. [5] ASAAD M, HELIEL A A. On s-quasinormally embedded subgroups of finite groups[J]. Journal of Pure and Applied Algebra, 2001, 165(2):129-135. [6] LI Yangming, WANG Yanming. On π-quasinormally embedded subgroups of finite groups[J]. Journal of Algebra, 2004, 281(1):109-123. [7] GUO W B, SKIBA A N. Finite groups with given s-embedded and n-embedded subgroups[J]. Journal of Algebra, 2009, 321(10):2843-2860. [8] LI Yangming, QIAO Shouhong, WANG Yanming. On weakly s-permutably embedded subgroups of finite groups[J]. Communications in Algebra, 2009, 37(3):1086-1097. [9] GUO W B, SKIBA A N. Groups with maximal subgroups of sylow subgroups σ-permutably embedded[J]. Journal of Group Theory, 2017, 20(1):169-183. [10] LI Yangming, WANG Yanming, WEI Huaquan. On p-nilpotency of finite groups with some subgroups π-quasinormally embedded[J]. Acta Mathematica Hungarica, 2005, 108:283-298. [11] HUPPERT B. Endliche gruppen Ⅰ[M]. Berlin: Springer, 1967. [12] DOERK K, HAWKES T O. Finite soluble groups[M]. Berlin: Walter De Gruyter, 1992. [13] GUO Wenbin. The theory of classes of groups[M]. Beijing: Science Press-Kluwer Academic Publishers, 2000. [14] KNYAGINA V N, MONAKHOV V S. On the π'-properties of a finite group possessing a hall π-subgroup[J]. Siberian Mathematical Journal, 2011, 52(2):234-243. |
[1] | 刘鑫,吴珍凤,杨南迎. 有限群的m-S-可补子群[J]. 《山东大学学报(理学版)》, 2021, 56(4): 8-13. |
[2] | 陈松良. 具有非交换Sylow子群的p2q3阶群的构造[J]. 山东大学学报(理学版), 2015, 50(12): 93-97. |
[3] | 陈松良,李惊雷,欧阳建新. 论p3q阶群的构造[J]. J4, 2013, 48(2): 27-31. |
[4] | 刘晓蕾. 关于E.Alemany等人的一个定理的一个注记[J]. J4, 2012, 47(10): 7-13. |
[5] | 刘晓蕾 王燕鸣. 有限群中的q-补及其应用[J]. J4, 2009, 44(10): 87-90. |
[6] | 刘晓蕾 . 关于有限群的c-正规性的几点注记[J]. J4, 2008, 43(10): 18-20 . |
|