您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (5): 25-32.doi: 10.6040/j.issn.1671-9352.0.2023.430

• 群论 • 上一篇    

σ-置换嵌入子群对群p-幂零性的影响

吉九州,周伟,杨南迎*   

  1. 江南大学理学院, 江苏 无锡 214122
  • 发布日期:2025-05-19
  • 通讯作者: 杨南迎(1981— ),男,副教授,硕士生导师,博士,研究方向为有限群论及群类理论. E-mail:yangny@jiangnan.edu.cn
  • 作者简介:吉九州(1999— ),男,硕士研究生,研究方向为有限群论. E-mail:18601502750@163.com*通信作者:杨南迎(1981— ),男,副教授,硕士生导师,博士,研究方向为有限群论及群类理论. E-mail:yangny@jiangnan.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(12201252)

Influence of σ-permutably embedded subgroups on p-nilpotency of finite groups

JI Jiuzhou, ZHOU Wei, YANG Nanying*   

  1. School of Science, Jiangnan University, Wuxi 214122, Jiangsu, China
  • Published:2025-05-19

摘要: G是一个有限群,称G的子群A在G中是σ-置换的,如果群G有一个完全Hall σ-集H,使得对所有的H∈H和所有的x∈G,均有AH x=H xA。称G的子群H在G中是σ-置换嵌入的,如果H的每个Hall σi-子群也是G的某个σ-置换子群的Hall σi-子群,研究群G的Sylow p-子群的σ-置换嵌入子群,给出群G为p-幂零群的新的判别准则。

关键词: 有限群, σ-置换子群, σ-置换嵌入子群, p-幂零群

Abstract: Let G be a finite group. A subgroup A of G is said to be σ-permutable in G if G possesses a complete Hall σ-set H such that AH x=H xA for all H∈H and all x∈G. A subgroup H of G is said to be σ-permutably embedded in G if every Hall σi-subgroup of H is also a Hall σi-subgroup of some σ-permutable subgroup of G. By studying the σ-permutably embedded subgroups of Sylow p-subgroups of G, some new criteria for G to be a p-nilpotent group are given.

Key words: finite group, σ-permutable subgroup, σ-permutably embedded subgroup, p-nilpotent group

中图分类号: 

  • O152
[1] SKIBA A N. On σ-subnormal and σ-permutable subgroups of finite groups[J]. Journal of Algebra, 2015, 436:1-16.
[2] SKIBA A N. A generalization of a hall theorem[J]. Journal of Algebra and Its Applications, 2016, 15(5):207-214.
[3] KEGEL O H. Sylow-gruppen und subnormalteiler endlicher gruppen[J]. Mathematische Zeitschrift, 1962, 78:205-221.
[4] BALLESTER B A, PEDRAZA M C. Sufficient conditions for supersolubility of finite groups[J]. Journal of Pure and Applied Algebra, 1998, 127(2):113-118.
[5] ASAAD M, HELIEL A A. On s-quasinormally embedded subgroups of finite groups[J]. Journal of Pure and Applied Algebra, 2001, 165(2):129-135.
[6] LI Yangming, WANG Yanming. On π-quasinormally embedded subgroups of finite groups[J]. Journal of Algebra, 2004, 281(1):109-123.
[7] GUO W B, SKIBA A N. Finite groups with given s-embedded and n-embedded subgroups[J]. Journal of Algebra, 2009, 321(10):2843-2860.
[8] LI Yangming, QIAO Shouhong, WANG Yanming. On weakly s-permutably embedded subgroups of finite groups[J]. Communications in Algebra, 2009, 37(3):1086-1097.
[9] GUO W B, SKIBA A N. Groups with maximal subgroups of sylow subgroups σ-permutably embedded[J]. Journal of Group Theory, 2017, 20(1):169-183.
[10] LI Yangming, WANG Yanming, WEI Huaquan. On p-nilpotency of finite groups with some subgroups π-quasinormally embedded[J]. Acta Mathematica Hungarica, 2005, 108:283-298.
[11] HUPPERT B. Endliche gruppen Ⅰ[M]. Berlin: Springer, 1967.
[12] DOERK K, HAWKES T O. Finite soluble groups[M]. Berlin: Walter De Gruyter, 1992.
[13] GUO Wenbin. The theory of classes of groups[M]. Beijing: Science Press-Kluwer Academic Publishers, 2000.
[14] KNYAGINA V N, MONAKHOV V S. On the π'-properties of a finite group possessing a hall π-subgroup[J]. Siberian Mathematical Journal, 2011, 52(2):234-243.
[1] 刘鑫,吴珍凤,杨南迎. 有限群的m-S-可补子群[J]. 《山东大学学报(理学版)》, 2021, 56(4): 8-13.
[2] 陈松良. 具有非交换Sylow子群的p2q3阶群的构造[J]. 山东大学学报(理学版), 2015, 50(12): 93-97.
[3] 陈松良,李惊雷,欧阳建新. 论p3q阶群的构造[J]. J4, 2013, 48(2): 27-31.
[4] 刘晓蕾. 关于E.Alemany等人的一个定理的一个注记[J]. J4, 2012, 47(10): 7-13.
[5] 刘晓蕾 王燕鸣. 有限群中的q-补及其应用[J]. J4, 2009, 44(10): 87-90.
[6] 刘晓蕾 . 关于有限群的c-正规性的几点注记[J]. J4, 2008, 43(10): 18-20 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!