《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (3): 116-126.doi: 10.6040/j.issn.1671-9352.0.2023.474
• • 上一篇
李澳归1,赵远英2,3*
LI Aogui1, ZHAO Yuanying2,3*
摘要: 提出一种切片Gibbs抽样的马尔可夫链蒙特卡罗(Markov chain Monte Carlo, MCMC)算法来计算空间误差模型未知参数的联合贝叶斯估计,通过2个模拟仿真说明提出的贝叶斯估计方法的有效性与切片Gibbs抽样算法的优势,实证分析说明模型和提出的贝叶斯估计方法的有效性。
中图分类号:
[1] LESAGE J, PACE K R. Introduction to spatial econometrics[M]. Boca Raton: CRC Press, 2010. [2] ANSELIN L. Spatial econometrics: methods and models[M]. New York: Springer, 1988. [3] TIAN Ruiqin, XU Dengke, DU Jiang, et al. Bayesian estimation for partially linear varying coefficient spatial autoregressive models[J]. Statistics and Its Interface, 2022, 15(1):105-113. [4] TANG Yangbing, DU Jiang, ZHANG Zhongzhan. A parametric specification test for linear spatial autoregressive models[J]. Spatial Statistics, 2023, 57(1):100767. [5] JU Yuanyuan, YANG Han, HU Mingxing, et al. Bayesian influence analysis of the skew-normal spatial autoregression models[J]. Mathematics, 2022, 10(8):1306. [6] GUO Penghui, LIU Lihu, QIAN Zhengming. Robust test for spatial error model: considering changes of spatial layouts and distribution misspecification[J]. Communications in Statistics: Simulation and Computation, 2015, 44(2):402-416. [7] CHIARA G, GIANFRANCO P, GIUSEPPE A, et al. Recursive estimation of the spatial error model[J]. Geographical Analysis, 2022, 55(1):90-106. [8] 李坤明,陈建宝. 非参数空间误差模型的截面最小二乘估计[J]. 数理统计与管理,2020,39(5):824-837. LI Kunming, CHEN Jianbao. Profile least square estimation of nonparametric spatial error model[J]. Journal of Applied Statistics and Management, 2020, 39(5):824-837. [9] VURAL Y, YELIZ K M. Robust estimation approach for spatial error model[J]. Journal of Statistical Computation and Simulation, 2020, 90(9):1618-1638. [10] DAI Xiaowen, LI Erqian, TIAN Maozai. Quantile regression for varying coefficient spatial error models[J]. Communications in Statistics: Theory and Methods, 2021, 50(10):2382-2397. [11] 陈小驽. 基于切片抽样MCMC方法的比较分析[D]. 成都:四川大学,2007. CHEN Xiaonu. Comparative analysis based on slice sampling with MCMC[D]. Chengdu: Sichuan University, 2007. [12] SENGUPTA B, FRISTON K J, PENNY W D. Gradient-free MCMC methods for dynamic causal modelling[J]. NeuroImage, 2015, 112:375-381. [13] ZHANG Jiwei, ZHANG Zhaoyuan, TAO Jian. A Bayesian algorithm based on auxiliary variables for estimating GRM with non-ignorable missing data[J]. Computational Statistics, 2021, 36(4):2643-2669. [14] LU Jing, ZHANG Jiwei, TAO Jian. Slice-Gibbs sampling algorithm for estimating the parameters of a multilevel item response model[J]. Journal of Mathematical Psychology, 2018, 82:12-25. [15] LU Jing, ZHANG Jiwei, ZHANG Zhaoyuan, et al. A novel and highly effective Bayesian sampling algorithm based on the auxiliary variables to estimate the testlet effect models[J]. Frontiers in Psychology, 2021, 12:509575. [16] METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equation of state calculations by fast computing machines[J]. Journal of Chemical Physics, 1953, 21(6):1087-1092. [17] HASTINGS W K. Monte Carlo sampling methods using Markov chains and their applications[J]. Biometrika, 1970, 57(1):97-109. [18] NEAL R M. Slice sampling[J]. The Annals of Statistics, 2003, 31(3):705-741. [19] LIU J S. Monte Carlo strategies in scientific computing[M]. Berlin: Springer, 2001 [20] GEMAN S, GEMAN D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6):721-741. [21] GEYER C J. Practical Markov chain Monte Carlo[J]. Statistical Science, 1992, 7(4):473-483. [22] CHEN Jiaqing, WANG Renfu, HUANG Yangxin. Semiparametric spatial autoregressive model: a two step Bayesian approach[J]. Annals of Public Health and Research, 2015, 2(1):1012. [23] GELMAN A, CARLIN B J, STERN S H, et al. Bayesian data analysis[M]. 3rd ed. Oxford: Taylor & Francis, 2013. [24] POLSON N G, SCOTT J G, WINDLE J. Bayesian inference for logistic models using Pólya-Gamma latent variables[J]. Journal of the American Statistical Association, 2013, 108(504):1339-1349. [25] ZHAO Yuanying, XU Dengke, DUAN Xingde, et al. A semiparametric Bayesian approach to binomial distribution logistic mixed-effects models for longitudinal data[J]. Journal of Statistical Computation and Simulation, 2022, 92(7):1438-1456. [26] 唐年胜,韦博成. 非线性再生散度模型[M]. 北京:科学出版社,2007. TIANG Niansheng, WEI Bocheng. Nonlinear reproductive dispersion models[M]. Beijing: Science Press, 2007. |
[1] | 龙兵,蒋再富. 定数截尾下步进应力部分加速寿命试验模型的统计推断[J]. 《山东大学学报(理学版)》, 2024, 59(12): 122-129. |
[2] | 胡江山,隋云云,付云鹏. 左截断右删失数据中泊松分布的贝叶斯推断[J]. 《山东大学学报(理学版)》, 2021, 56(7): 46-52. |
[3] | 周小双1,2. 错误先验指定下Bayes估计与广义最小二乘估计的相对效率[J]. J4, 2010, 45(9): 70-73. |
|