您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (3): 116-126.doi: 10.6040/j.issn.1671-9352.0.2023.474

• • 上一篇    

基于切片Gibbs抽样算法的空间误差模型的贝叶斯参数估计

李澳归1,赵远英2,3*   

  1. 1.贵州大学数学与统计学院, 贵州 贵阳 550025;2.贵阳学院理学院, 贵州 贵阳 550005;3.贵州交通职业大学轨道交通工程系, 贵州 贵阳 551400
  • 发布日期:2025-03-10
  • 通讯作者: 赵远英(1981— ),男,教授,硕士生导师,博士,研究方向为应用统计. E-mail:zhaoyuanying_@126.com
  • 作者简介:李澳归(1999— ),男,硕士研究生,研究方向为概率论与数理统计. E-mail:lagjs123@163.com*通信作者:赵远英(1981— ),男,教授,硕士生导师,博士,研究方向为应用统计. E-mail:zhaoyuanying_@126.com
  • 基金资助:
    国家自然科学基金资助项目(12161014);贵州省省级科技计划项目(黔科合支撑[2023]一般139)2018年度贵州省高层次创新型人才项目阶段性成果

Bayesian parametric estimations for spatial error models based on slice-Gibbs sampling

LI Aogui1, ZHAO Yuanying2,3*   

  1. 1. College of Mathematics and Statistic, Guizhou University, Guiyang 550025, Guizhou, China;
    2. College of Science, Guiyang University, Guiyang 550005, Guizhou, China;
    3. Department of Railway Engineering, Guizhou Communications Polytechnic University, Guiyang 551400, Guizhou, China
  • Published:2025-03-10

摘要: 提出一种切片Gibbs抽样的马尔可夫链蒙特卡罗(Markov chain Monte Carlo, MCMC)算法来计算空间误差模型未知参数的联合贝叶斯估计,通过2个模拟仿真说明提出的贝叶斯估计方法的有效性与切片Gibbs抽样算法的优势,实证分析说明模型和提出的贝叶斯估计方法的有效性。

关键词: 贝叶斯估计, Gibbs抽样, 切片抽样, 空间误差模型

Abstract: A Markov chain Monte Carlo(MCMC)technique called the slice-Gibbs sampling algorithm is proposed to calculate joints Bayesian estimations of unknown parameters for spatial error models, the proposed algorithm and Bayesian approach are illustrated by two simulation studies, the model and methodology are demonstrated by a real example.

Key words: Bayesian estimation, Gibbs sampling, slice sampling, spatial error model

中图分类号: 

  • O212.8
[1] LESAGE J, PACE K R. Introduction to spatial econometrics[M]. Boca Raton: CRC Press, 2010.
[2] ANSELIN L. Spatial econometrics: methods and models[M]. New York: Springer, 1988.
[3] TIAN Ruiqin, XU Dengke, DU Jiang, et al. Bayesian estimation for partially linear varying coefficient spatial autoregressive models[J]. Statistics and Its Interface, 2022, 15(1):105-113.
[4] TANG Yangbing, DU Jiang, ZHANG Zhongzhan. A parametric specification test for linear spatial autoregressive models[J]. Spatial Statistics, 2023, 57(1):100767.
[5] JU Yuanyuan, YANG Han, HU Mingxing, et al. Bayesian influence analysis of the skew-normal spatial autoregression models[J]. Mathematics, 2022, 10(8):1306.
[6] GUO Penghui, LIU Lihu, QIAN Zhengming. Robust test for spatial error model: considering changes of spatial layouts and distribution misspecification[J]. Communications in Statistics: Simulation and Computation, 2015, 44(2):402-416.
[7] CHIARA G, GIANFRANCO P, GIUSEPPE A, et al. Recursive estimation of the spatial error model[J]. Geographical Analysis, 2022, 55(1):90-106.
[8] 李坤明,陈建宝. 非参数空间误差模型的截面最小二乘估计[J]. 数理统计与管理,2020,39(5):824-837. LI Kunming, CHEN Jianbao. Profile least square estimation of nonparametric spatial error model[J]. Journal of Applied Statistics and Management, 2020, 39(5):824-837.
[9] VURAL Y, YELIZ K M. Robust estimation approach for spatial error model[J]. Journal of Statistical Computation and Simulation, 2020, 90(9):1618-1638.
[10] DAI Xiaowen, LI Erqian, TIAN Maozai. Quantile regression for varying coefficient spatial error models[J]. Communications in Statistics: Theory and Methods, 2021, 50(10):2382-2397.
[11] 陈小驽. 基于切片抽样MCMC方法的比较分析[D]. 成都:四川大学,2007. CHEN Xiaonu. Comparative analysis based on slice sampling with MCMC[D]. Chengdu: Sichuan University, 2007.
[12] SENGUPTA B, FRISTON K J, PENNY W D. Gradient-free MCMC methods for dynamic causal modelling[J]. NeuroImage, 2015, 112:375-381.
[13] ZHANG Jiwei, ZHANG Zhaoyuan, TAO Jian. A Bayesian algorithm based on auxiliary variables for estimating GRM with non-ignorable missing data[J]. Computational Statistics, 2021, 36(4):2643-2669.
[14] LU Jing, ZHANG Jiwei, TAO Jian. Slice-Gibbs sampling algorithm for estimating the parameters of a multilevel item response model[J]. Journal of Mathematical Psychology, 2018, 82:12-25.
[15] LU Jing, ZHANG Jiwei, ZHANG Zhaoyuan, et al. A novel and highly effective Bayesian sampling algorithm based on the auxiliary variables to estimate the testlet effect models[J]. Frontiers in Psychology, 2021, 12:509575.
[16] METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equation of state calculations by fast computing machines[J]. Journal of Chemical Physics, 1953, 21(6):1087-1092.
[17] HASTINGS W K. Monte Carlo sampling methods using Markov chains and their applications[J]. Biometrika, 1970, 57(1):97-109.
[18] NEAL R M. Slice sampling[J]. The Annals of Statistics, 2003, 31(3):705-741.
[19] LIU J S. Monte Carlo strategies in scientific computing[M]. Berlin: Springer, 2001
[20] GEMAN S, GEMAN D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6):721-741.
[21] GEYER C J. Practical Markov chain Monte Carlo[J]. Statistical Science, 1992, 7(4):473-483.
[22] CHEN Jiaqing, WANG Renfu, HUANG Yangxin. Semiparametric spatial autoregressive model: a two step Bayesian approach[J]. Annals of Public Health and Research, 2015, 2(1):1012.
[23] GELMAN A, CARLIN B J, STERN S H, et al. Bayesian data analysis[M]. 3rd ed. Oxford: Taylor & Francis, 2013.
[24] POLSON N G, SCOTT J G, WINDLE J. Bayesian inference for logistic models using Pólya-Gamma latent variables[J]. Journal of the American Statistical Association, 2013, 108(504):1339-1349.
[25] ZHAO Yuanying, XU Dengke, DUAN Xingde, et al. A semiparametric Bayesian approach to binomial distribution logistic mixed-effects models for longitudinal data[J]. Journal of Statistical Computation and Simulation, 2022, 92(7):1438-1456.
[26] 唐年胜,韦博成. 非线性再生散度模型[M]. 北京:科学出版社,2007. TIANG Niansheng, WEI Bocheng. Nonlinear reproductive dispersion models[M]. Beijing: Science Press, 2007.
[1] 龙兵,蒋再富. 定数截尾下步进应力部分加速寿命试验模型的统计推断[J]. 《山东大学学报(理学版)》, 2024, 59(12): 122-129.
[2] 胡江山,隋云云,付云鹏. 左截断右删失数据中泊松分布的贝叶斯推断[J]. 《山东大学学报(理学版)》, 2021, 56(7): 46-52.
[3] 周小双1,2. 错误先验指定下Bayes估计与广义最小二乘估计的相对效率[J]. J4, 2010, 45(9): 70-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 谢娟英1, 2,张琰1,谢维信2, 3,高新波2. 一种新的密度加权粗糙K-均值聚类算法[J]. J4, 2010, 45(7): 1 -6 .
[2] 吴志军,沈丹丹. 基于信息综合集成共享的下一代网络化全球航班追踪体系结构及关键技术[J]. 山东大学学报(理学版), 2016, 51(11): 1 -6 .
[3] 曲守宁,付爱芳,李静,刘静. 基于柔性神经树模型的股票市场风险预测[J]. J4, 2009, 44(11): 44 -47 .
[4] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[5] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[6] 韩亚飞,伊文慧,王文波,王延平,王华田*. 基于高通量测序技术的连作杨树人工林土壤细菌多样性研究[J]. 山东大学学报(理学版), 2014, 49(05): 1 -6 .
[7] 于文广1 ,于红彬2 . 带扩散扰动项的保费随机收取的再保险与最终破产概率[J]. J4, 2009, 44(4): 84 -87 .
[8] . 微生物批式流加发酵的建模及基于HPSO算法的参数辨识[J]. J4, 2009, 44(7): 71 -78 .
[9] 王红妹,肖敏*,李正义,李玉梅,钱新民 . 转糖基β-半乳糖苷酶产生菌筛选和鉴定及酶催化生成低聚半乳糖[J]. J4, 2006, 41(1): 133 -139 .
[10] 张佳丽,苗连英,宋文耀. 最大度为8不含相邻4-圈的1-平面图边色数[J]. 山东大学学报(理学版), 2014, 49(04): 18 -23 .