《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (7): 46-52.doi: 10.6040/j.issn.1671-9352.0.2020.390
• • 上一篇
胡江山1,隋云云1,付云鹏2
HU Jiang-shan1, SUI Yun-yun1, FU Yun-peng2
摘要: 研究了左截断右删失数据中泊松分布的贝叶斯推断问题。主要给出了参数的极大似然估计和贝叶斯估计,同时给出了相应的置信区间。最后给出了贝叶斯推断的随机模拟检验,通过检验发现:在小样本的情况下,贝叶斯估计精度比极大似然估计的精度高一些,而在大样本的情况下,这2种估计的精度相差不大。在置信区间的构造方面,不论是小样本还是大样本,最大后验密度置信区间确实比传统的置信区间有效。
中图分类号:
[1] SHEN P S, WENG L N. The Cox-Aalen model for left-truncated and right-censored data[J]. Communications in Statistics: Theory and Methods, 2018, 47(21): 5357-5368. [2] ZHAO M, JIANG H M, ZHOU Y. Estimation of percentile residual life function with left-truncated and right-censored data[J]. Communications in Statistics: Theory and Methods, 2017, 46(2): 995-1006. [3] TSAI T H, TSAI W Y, CHI Y C, et al. Confidence intervals for the ratio of two Median residual lifetimes with left-truncated and right-censored data[J]. Biometrics, 2016, 72(1): 232-241. [4] BALAKRISHNAN N, MITRA D. Some further issues concerning likelihood inference for left truncated and right censored lognormal data[J]. Communications in Statistics: Simulation and Computation, 2014, 43(2): 400-416. [5] 何朝兵,柴士改,刘华文. 截断删失数据下泊松分布参数的点估计[J].华南师范大学学报(自然科学版), 2015, 47(2): 141-145. HE Chaobing, CHAI Shigai, LIU Huawen. Point estimation of parameter of Poisson distribution for truncated and censored data [J]. Journal of South China Normal University(Natural Science Edition), 2015, 47(2): 141-145. [6] 胡隽,曹显兵. 基于左截断右删失数据的指数分布参数估计[J]. 统计与决策,2016(16): 71-73. HU Juan, CAO Xianbing. Estimation of exponential distribution parameters based on left truncated and right censored data [J]. Statistics and Decision, 2016(16): 71-73. [7] KUNDU D, MITRA D. Bayesian inference of Weibull distribution based on left truncated and right censored data[J]. Computational Statistics & Data Analysis, 2016, 99: 38-50. [8] SUNITA K. Poisson distribution in real life [J]. International Journal of Engineering, Science and Mathematics, 2018, 7(4): 284-290. [9] PUDOVKIN A I, BORNMANN L. Approximation of citation distributions to the Poisson distribution[J]. COLLNET Journal of Scientometrics and Information Management, 2018, 12(1): 49-53. [10] GRAMMER R T. The Poisson distribution in biology instruction[J]. The American Biology Teacher, 2017, 79(1): 10-13. [11] RODRIGUES G C, LOUZADA F, RAMOS P L. Poisson-exponential distribution: different methods of estimation[J]. Journal of Applied Statistics, 2018, 45(1): 128-144. [12] BUDGETT S, PFANNKUCH M. Modeling and linking the Poisson and exponential distributions[J]. ZDM, 2018, 50(7): 1281-1294. [13] 李中恢. 威布尔分布参数的最高后验概率密度区间估计算法[J]. 浙江大学学报(理学版), 2010, 37(5): 515-518. LI Zhonghui. Algorithm for the HPD confidence interval estimation of parameter of exponential distribution[J]. Journal of Zhejiang University(Science Edition), 2010, 37(5): 515-518. [14] 茆诗松, 汤银才. 贝叶斯统计[M].北京:中国统计出版社,2012:16-19. MAO Shisong, TANG Yincai. Bayesian statistics[M]. Beijing: China Statistics Press, 2012: 16-19. |
[1] | 周小双1,2. 错误先验指定下Bayes估计与广义最小二乘估计的相对效率[J]. J4, 2010, 45(9): 70-73. |
|