您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (7): 32-45.doi: 10.6040/j.issn.1671-9352.0.2020.293

• • 上一篇    

管理委托下的双寡头博弈的复杂动力学分析

朱彦兰1,周伟1*,褚童2,李文娜1   

  1. 1.兰州交通大学数理学院, 甘肃 兰州 730070;2.浙江财经大学法学院, 杭州 浙江 310018
  • 发布日期:2021-07-19
  • 作者简介:朱彦兰(1997— ),女,硕士研究生,研究方向为非线性动力学. E-mail:zhuyanlan9597@163.com*通信作者简介:周伟(1980— ),男,博士,副教授,研究方向为非线性动力学. E-mail:wei_zhou@vip.126.com
  • 基金资助:
    国家自然科学基金资助项目(61863022);中国博士后科学基金资助项目(2017M623276)

Complex dynamic analysis of the duopoly game under management delegation

ZHU Yan-lan1, ZHOU Wei1*, CHU Tong2, LI Wen-na1   

  1. 1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China;
    2. School of Law, Zhejiang University of Finance and Economics, Hangzhou 310018, Zhejiang, China
  • Published:2021-07-19

摘要: 在具有指数型逆需求函数的基础上,考虑企业管理者以自身利益最大化为目标函数,建立更符合实际市场环境的古诺动态双寡头博弈模型。通过计算得到系统存在4个均衡点,并利用非线性动力学理论和Jury判据对其进行了局部稳定性分析。通过一维和二维分岔图分析了调整速度、权重系数和边际成本对系统稳定性的影响以及系统在参数变化下的演化过程;并发现了3种间歇混沌现象,结论是其为系统进行自我调节的一种方式;此外,通过吸引盆讨论了系统的多稳态性,得出初始条件的选择会影响系统最终的状态。

关键词: 指数型逆需求函数, 管理委托, 间歇混沌, 吸引盆, 稳定性分析

Abstract: On the basis of the exponential inverse demand function and considering that the enterprise managers take the maximization of their own interests as the objective function, the Cournot dynamic oligopoly game model which is more in line with the actual market environment is established. Through calculation, the system has four equilibrium points, and their local stabilities are analyzed using nonlinear dynamics theory and Jury criterion. The influence of parameters such as the speed of adjusting, weight coefficient and marginal cost on the stability of the system and the evolution process of the system under the change of parameters are analyzed by one-dimensional bifurcation diagrams and two-dimensional bifurcation diagrams. Three kinds of intermittent chaos phenomena are found, and it is concluded that this is a way of self-regulation of the system. In addition, multistability of the system is discussed through the basin of attractive, and it is concluded that the selection of initial conditions will affect the final state of system.

Key words: exponential inverse demand function, management delegation, intermittent chaos, basin of attraction, stability analysis

中图分类号: 

  • O193
[1] BISCHI I G, LAMANTIA F. A dynamic model of oligopoly with R&D externalities along networks. Part I[J]. Mathematics and Computers in Simulation, 2012, 84:51-65.
[2] BISCHI I G, LAMANTIA F. A dynamic model of oligopoly with R&D externalities along networks. Part II[J]. Mathematics and Computers in Simulation, 2012, 84:66-82.
[3] ZHOU J, ZHOU W, CHU T, et al. Bifurcation, intermittent chaos and multi-stability in a two-stage Cournot game with R&D spillover and product differentiation[J]. Applied Mathematics and Computation, 2019, 341:358-378.
[4] GORI L, SODINI M, FANTI L. A nonlinear Cournot duopoly with advertising[J]. Chaos, Solitons & Fractals, 2015, 79:178-190.
[5] PANSERA B A, GUERRINI L, FERRARA M, et al. Bifurcation analysis of a duopoly game with R&D spillover, price competition and time delays[J]. Symmetry, 2020, 12(2):257.
[6] ASKAR S S, AL-KHEDHAIRI A. Dynamic effects arise due to consumers’ preferences depending on past choices[J]. Entropy, 2020, 22(2):173.
[7] MA J H, XIE L. The stability analysis of the dynamic pricing strategy for bundling goods: a comparison between simultaneous and sequential pricing mechanism[J]. Nonlinear Dynamics, 2019, 95(2):1147-1164.
[8] XIE L, MA J H, GOH M. Supply chain coordination in the presence of uncertain yield and demand[J]. International Journal of Production Research, 2020:1-17.
[9] CAO Y X, ZHOU W, CHU T, et al. Global dynamics and synchronization in a duopoly game with bounded rationality and consumer surplus[J]. International Journal of Bifurcation and Chaos, 2019, 29(11):1-15.
[10] GORI L, PECORA N, SODINI M. Market share delegation in a nonlinear duopoly with quantity competition: the role of dynamic entry barriers[J]. Journal of Evolutionary Economics, 2017, 27(5):905-931.
[11] FANTI L, GORI L, MAMMANA C, et al. Local and global dynamics in a duopoly with price competition and market share delegation[J]. Chaos, Solitons & Fractals, 2014, 69:253-270.
[12] DELBONO F, LAMBERTINI L, MARATTIN L. Strategic delegation under cost asymmetry[J]. Operations Research Letters, 2016, 44(4):443-445.
[13] COLOMBO S. Strategic delegation under cost asymmetry revised[J]. Operations Research Letters, 2019, 47(6):527-529.
[14] ELSADANY A A. Dynamics of a Cournot duopoly game with bounded rationality based on relative profit maximization[J]. Applied Mathematics and Computation, 2017, 294:253-263.
[15] 曹慧荣, 周伟, 褚童, 等. 政府征税与补贴Bertrand博弈模型的动力学分析[J]. 山东大学学报(理学版), 2019, 54(11):52-62. CAO Huirong, ZHOU Wei, CHU Tong, et al. Dynamic analysis of Bertrand game model about taxation of government and subsidy[J]. Journal of Shandong University(Natural Science), 2019, 54(11):52-62.
[16] ZHOU W, WANG X X. On the stability and multistability in a duopoly game with R&D spillover and price competition[J]. Discrete Dynamics in Nature and Society, 2019, 2019:1-20.
[17] FANTI L, GORI L, MAMMANA C, et al. The dynamics of a Bertrand duopoly with differentiated products: synchronization, intermittency and global dynamics[J]. Chaos, Solitons & Fractals, 2013, 52:73-86.
[18] 路正玉, 周伟, 于欢欢, 等. 考虑广告溢出效应的博弈模型的动力学分析[J]. 山东大学学报(理学版), 2019, 54(11):63-70,80. LU Zhengyu, ZHOU Wei, YU Huanhuan, et al. Dynamic analysis of game model considering advertising spillover effect[J]. Journal of Shandong University(Natural Science), 2019, 54(11):63-70,80.
[19] TRAMONTANA F, ELSADANY A A, XIN B G, et al. Local stability of the Cournot solution with increasing heterogeneous competitors[J]. Nonlinear Analysis: Real World Applications, 2015, 26:150-160.
[20] ZHANG Y H, ZHOU W, CHU T, et al. Complex dynamics analysis for a two-stage Cournot duopoly game of semi-collusion in production[J]. Nonlinear Dynamics, 2018, 91(2):819-835.
[21] PENG Y, LU Q, XIAO Y, et al. Complex dynamics analysis for a remanufacturing duopoly model with nonlinear cost[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 514:658-670.
[22] EL-METWALLY H A. On the structure and the qualitative behavior of an economic model[J]. Advances in Difference Equations, 2013, 2013(1):1-13.
[23] ANDALUZ J, ELSADANY A A, JARNE G. Dynamic Cournot oligopoly game based on general isoelastic demand[J]. Nonlinear Dynamics, 2020, 99(2):1053-1063.
[24] ASKAR S S, AL-KHEDHAIRI A. The dynamics of a business game: a 2D-piecewise smooth nonlinear map[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 537:122766.
[25] XIE L, HAN H S. Capacity sharing and capacity investment of environment-friendly manufacturing: strategy selection and performance analysis[J]. International Journal of Environmental Research and Public Health, 2020, 17(16):5790.
[26] 吴文娟. 复杂混沌系统的存在性及动力学特性分析[D]. 天津:南开大学, 2010. WU Wenjuan. Dynamical behaviour analysis and existence verification for chaos of complex chaotic systems[D]. Tianjin: Nankai University, 2010.
[1] 沈文昊, 乔坎坤, 卢志明. 金融股指稳定性的样本熵分析[J]. 山东大学学报(理学版), 2014, 49(07): 50-56.
[2] 苏丽娟 王文洽. 双边空间分数阶对流-扩散方程的一种有限差分解法[J]. J4, 2009, 44(10): 26-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!