您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 79-86.doi: 10.6040/j.issn.1671-9352.0.2023.479

• • 上一篇    

形式三角矩阵环上相对于对偶对的Gorenstein平坦模和维数

刘铃,陈文静*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2025-11-11
  • 通讯作者: 陈文静(1989— ),女,副教授,博士,研究方向为环的同调理论. E-mail:chenwj@nwnu.edu.cn
  • 作者简介:刘铃(1999— ),女,硕士研究生,研究方向为环的同调理论. E-mail:15282545860@163.com
  • 基金资助:
    国家自然科学基金资助项目(11901463,12361007);甘肃省青年科技基金计划项目(20JR5RA517)

Gorenstein flat modules and dimensions with respect to duality pairs over formal triangular matrix rings

LIU Ling, CHEN Wenjing*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2025-11-11

摘要: 设T=(A 0U B)是形式三角矩阵环,其中A和B是环,U是(B,A)-双模。G F(F(R),Y )表示相对于完备对偶对(X,Y )的Gorenstein平坦左R-模类。假设(C1,C2)和(D1,D2)分别为A环和B环上的完备对偶对,(UC1D1,UC2,D2)是由(C1,C2)和(D1,D2)诱导的T环上的完备对偶对。证明若UA有有限平坦维数,G F(F(T),UC2,D2)关于扩张封闭,则左T-模(M1M2)φM∈G F(F(T), UC2,D2)当且仅当 M1∈G F(F(A),C2), M2/ImM)∈G F(F(B),D2), φM:U⊗AM1→M2是单同态。此外还给出左T-模的相对于完备对偶对(UC1D1,UC2,D2)的Gorenstein平坦维数的估计。

关键词: 形式三角矩阵环, 相对于完备对偶对的Gorenstein平坦模, 相对于完备对偶对的Gorenstein平坦维数

Abstract: Let T=(A 0U B) be a formal triangular matrix ring, where A and B are rings and U is a (B,A)-bimodule. G F(F(R),Y ) denotes the class of all Gorenstein flat left R-modules with respect to a complete duality pair(X,Y ). Assume that(C1,C2)and(D1,D2)are complete duality pairs over the ring A and the ring B respectively, and(UC1D1,UC2,D2)is a complete duality pair over the ring T induced by(C1,C2)and(D1,D2). It is proven that, if UA has finite flat dimension and G F(F(T),UC2,D2) is closed under extensions, then a left T-module (M1M2)φM∈G F(F(T),UC2,D2) if and only if M1∈G F(F(A),C2), M2/ImM)∈G F(F(B),D2), and φM:U⊗AM1→M2 is a monomorphism. Furthermore, an estimate of Gorenstein flat dimension with respect to the complete duality pair(UC1D1,UC2,D2)of a left T-module is given.

Key words: formal triangular matrix ring, Gorenstein flat module with respect to a complete duality pair, Gorenstein flat dimension with respect to a complete duality pair

中图分类号: 

  • O153.3
[1] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter De Gruyter, 2000.
[2] ENOCHS E E, IZURDIAGA M C, TORRECILLAS B. Gorenstein conditions over triangular matrix rings[J]. Journal of Pure and Applied Algebra, 2014, 218(8):1544-1554.
[3] MAO Lixin. Gorenstein flat modules and dimensions over formal triangular matrix rings[J]. Journal of Pure and Applied Algebra, 2020, 224(4):106207.
[4] MAO Lixin. Duality pairs and FP-injective modules over formal triangular matrix rings[J]. Communications in Algebra, 2020, 48(12):5296-5310.
[5] GILLESPIE J. Duality pairs and stable module categories[J]. Journal of Pure and Applied Algebra, 2019, 223(8):3425-3435.
[6] BECERRIL V.(F,A)-Gorenstein flat homological dimensions[J]. Journal of the Korean Mathematical Society, 2022, 59(6):1203-1227.
[7] GREEN E L. On the representation theory of rings in matrix form[J]. Pacific Journal of Mathematics, 1982, 100(1):123-138.
[8] KRYLOV P, TUGANBAEV A. Formal matrices[M]. Berlin: Springer, 2017.
[9] HOLM H, JØRGENSEN P. Cotorsion pairs induced by duality pairs[J]. Journal of Commutative Algebra, 2009, 1(4):621-633.
[10] FOSSUM R M, GRIFFITH P A, REITEN I. Trivial extensions of Abelian categories[M]. New York: Springer, 1975.
[11] ROTMAN J J. An introduction to homological algebra[M]. New York: Academic Press, 1979.
[12] 牟婷. 相对于对偶对的Gorenstein平坦维数和相对奇点范畴[D]. 兰州:西北师范大学,2022. MOU Ting. Gorenstein flat dimensions with respect to duality pairs and relative singularity categories[D]. Lanzhou: Northwest Normal University, 2022.
[1] 张翠萍,董娇娇,杨银银. 形式三角矩阵环上的Gorenstein FP-内射维数[J]. 《山东大学学报(理学版)》, 2024, 59(2): 8-13.
[2] 杨银银,张翠萍. 形式三角矩阵环上的 Gorenstein FP-内射模[J]. 《山东大学学报(理学版)》, 2022, 57(2): 38-44.
[3] 牛韶花,杨刚. 形式三角矩阵环上的n-Gorenstein投射模[J]. 《山东大学学报(理学版)》, 2022, 57(10): 44-49.
[4] 吴德军,周慧. 三角矩阵环上Gorenstein FP-内射模的刻画[J]. 《山东大学学报(理学版)》, 2021, 56(8): 86-93.
[5] 赵阳,张文汇. 形式三角矩阵环上的强Ding投射模和强Ding内射模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 37-45.
[6] 黄述亮. 形式三角矩阵环上导子的几个结果[J]. 山东大学学报(理学版), 2015, 50(10): 43-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!