《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (11): 79-86.doi: 10.6040/j.issn.1671-9352.0.2023.479
• • 上一篇
刘铃,陈文静*
LIU Ling, CHEN Wenjing*
摘要: 设T=(A 0U B)是形式三角矩阵环,其中A和B是环,U是(B,A)-双模。G F(F(R),Y )表示相对于完备对偶对(X,Y )的Gorenstein平坦左R-模类。假设(C1,C2)和(D1,D2)分别为A环和B环上的完备对偶对,(UC1D1,UC2,D2)是由(C1,C2)和(D1,D2)诱导的T环上的完备对偶对。证明若UA有有限平坦维数,G F(F(T),UC2,D2)关于扩张封闭,则左T-模(M1M2)φM∈G F(F(T), UC2,D2)当且仅当 M1∈G F(F(A),C2), M2/Im(φM)∈G F(F(B),D2), φM:U⊗AM1→M2是单同态。此外还给出左T-模的相对于完备对偶对(UC1D1,UC2,D2)的Gorenstein平坦维数的估计。
中图分类号:
| [1] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter De Gruyter, 2000. [2] ENOCHS E E, IZURDIAGA M C, TORRECILLAS B. Gorenstein conditions over triangular matrix rings[J]. Journal of Pure and Applied Algebra, 2014, 218(8):1544-1554. [3] MAO Lixin. Gorenstein flat modules and dimensions over formal triangular matrix rings[J]. Journal of Pure and Applied Algebra, 2020, 224(4):106207. [4] MAO Lixin. Duality pairs and FP-injective modules over formal triangular matrix rings[J]. Communications in Algebra, 2020, 48(12):5296-5310. [5] GILLESPIE J. Duality pairs and stable module categories[J]. Journal of Pure and Applied Algebra, 2019, 223(8):3425-3435. [6] BECERRIL V.(F,A)-Gorenstein flat homological dimensions[J]. Journal of the Korean Mathematical Society, 2022, 59(6):1203-1227. [7] GREEN E L. On the representation theory of rings in matrix form[J]. Pacific Journal of Mathematics, 1982, 100(1):123-138. [8] KRYLOV P, TUGANBAEV A. Formal matrices[M]. Berlin: Springer, 2017. [9] HOLM H, JØRGENSEN P. Cotorsion pairs induced by duality pairs[J]. Journal of Commutative Algebra, 2009, 1(4):621-633. [10] FOSSUM R M, GRIFFITH P A, REITEN I. Trivial extensions of Abelian categories[M]. New York: Springer, 1975. [11] ROTMAN J J. An introduction to homological algebra[M]. New York: Academic Press, 1979. [12] 牟婷. 相对于对偶对的Gorenstein平坦维数和相对奇点范畴[D]. 兰州:西北师范大学,2022. MOU Ting. Gorenstein flat dimensions with respect to duality pairs and relative singularity categories[D]. Lanzhou: Northwest Normal University, 2022. |
| [1] | 张翠萍,董娇娇,杨银银. 形式三角矩阵环上的Gorenstein FP-内射维数[J]. 《山东大学学报(理学版)》, 2024, 59(2): 8-13. |
| [2] | 杨银银,张翠萍. 形式三角矩阵环上的 Gorenstein FP-内射模[J]. 《山东大学学报(理学版)》, 2022, 57(2): 38-44. |
| [3] | 牛韶花,杨刚. 形式三角矩阵环上的n-Gorenstein投射模[J]. 《山东大学学报(理学版)》, 2022, 57(10): 44-49. |
| [4] | 吴德军,周慧. 三角矩阵环上Gorenstein FP-内射模的刻画[J]. 《山东大学学报(理学版)》, 2021, 56(8): 86-93. |
| [5] | 赵阳,张文汇. 形式三角矩阵环上的强Ding投射模和强Ding内射模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 37-45. |
| [6] | 黄述亮. 形式三角矩阵环上导子的几个结果[J]. 山东大学学报(理学版), 2015, 50(10): 43-46. |
|
||