您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (2): 38-44.doi: 10.6040/j.issn.1671-9352.0.2021.328

• • 上一篇    

形式三角矩阵环上的 Gorenstein FP-内射模

杨银银,张翠萍*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2022-01-07
  • 作者简介:杨银银(1996— ), 女, 硕士研究生, 研究方向为环的同调理论. E-mail:1739238198@qq.com*通信作者简介:张翠萍(1974— ), 女, 博士, 副教授, 硕士生导师, 研究方向为环的同调理论. E-mail:zhangcp@nwnu.edu.cu
  • 基金资助:
    国家自然科学基金资助项目(11761060)

Gorenstein FP-injective modules over formal triangular matrix rings

YANG Yin-yin, ZHANG Cui-ping*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2022-01-07

摘要: 设T=(A 0U B)是形式三角矩阵环,其中A,B是环,U是(B,A)-双模。证明了若T是左凝聚环,BU是有限表示的且pd(BU)<∞, M=(M1M2)φMGorenstein FP-内射左T-模,则 Ker φM^~是Gorenstein FP-内射左A-模,M2Gorenstein FP-内射左B-模,且φM^~是满同态;若T还是左GFPI-封闭环,则反之成立。

关键词: 形式三角矩阵环, FP-内射模, Gorenstein FP-内射模

Abstract: Let T=(A 0U B) be a formal triangular matrix ring, where A and B are rings and U is (B,A)-bimodule. It is proved that if T is a left cocherent ring, BU is finitely presented and pd(BU)<∞, M=(M1M2)φM is Gorenstein FP-injective left T-module, then Ker φM^~ is Gorenstein FP-injective left A-module, M2 is Gorenstein FP-injective left B-module, and φM^~ is an epimorphism; if T is still a left GFPI-closed ring, then the opposite case holds.

Key words: formal triangular matrix ring, FP-injective module, Gorenstein FP-injective module

中图分类号: 

  • O153.3
[1] HAGHANY A, VARADARAJAN K. Study of formal triangular matrix rings[J]. Comm Algebra, 1999, 27(11):5507-5525.
[2] HAGHANY A, VARADARAJAN K. Study of modules over formal triangular matrix rings[J]. J Pure Appl Algebra, 2000, 147:41-58.
[3] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000.
[4] MAO Lixin, DING Nanqing. Gorenstein FP-injective and Gorenstein flat modules[J]. Journal of Algebra and Its Application, 2008, 7(4):491-506.
[5] GAO Zenghui, WANG Fanggui. Coherent rings and Gorenstein FP-injective modules[J]. Comm Algebra, 2012, 40(5):1669-1679.
[6] ZHANG Pu. Gorenstein projective modules and symmetric recollements[J]. J Algebra, 2013, 388:65-80.
[7] ENOCHS E E, CORTES-IZURDIAGA M. Gorenstein conditions over triangular matrix rings[J]. J Pure Appl Algebra, 2014, 218:1544-1554.
[8] MAO Lixin. Gorenstein flat modules dimension over formal triangular matrix rings[J]. J Pure Appl Algebra, 2019, 224:1-10.
[9] MAO Lixin. Duality pairs and FP-injective modules over formal triangular matrix rings[J]. Comm Algebra, 2020, 48:5296-5310.
[10] 杨燕妮,杨刚.关于Gorenstein FP-内射模及维数[J]. 四川师范大学学报(自然科学版),2016, 39(1):47-50. YANG Yanni, YANG Gang. On Gorenstein FP-injective modules and dimensions[J]. Journal of Sichuan Normal University(Natural Science), 2016, 39(1):47-50.
[11] 夏国利,王芳贵. 形式三角矩阵环上的PC-内射模[J]. 四川师范大学学报(自然科学版),2018, 41(1):39-43. XIA Guoli, WANG Fanggui. PC-injective modules over formal triangular matrix rings[J]. Journal of Sichuan Normal University(Natural Science), 2018, 41(1):39-43.
[12] HAGHANY A, MAZROOEI M, VEDADI M R. Pure projectivity and pure injectivity over formal triangular matrix rings[J]. Journal of Algebra and Its Applications, 2012, 11(6):1-13.
[1] 吴德军,周慧. 三角矩阵环上Gorenstein FP-内射模的刻画[J]. 《山东大学学报(理学版)》, 2021, 56(8): 86-93.
[2] 刘婷,张文汇. Gorenstein IFP-平坦模[J]. 《山东大学学报(理学版)》, 2020, 55(2): 91-98.
[3] 赵阳,张文汇. 形式三角矩阵环上的强Ding投射模和强Ding内射模[J]. 《山东大学学报(理学版)》, 2020, 55(10): 37-45.
[4] 吴小英,王芳贵. 分次版本的Enochs定理[J]. 山东大学学报(理学版), 2018, 53(10): 22-26.
[5] 黄述亮. 形式三角矩阵环上导子的几个结果[J]. 山东大学学报(理学版), 2015, 50(10): 43-46.
[6] 陈文静,刘仲奎. 关于n-强 Gorenstein FP-内射模的注记[J]. 山东大学学报(理学版), 2014, 49(04): 50-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!