您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (11): 20-30.doi: 10.6040/j.issn.1671-9352.0.2023.481

•   • 上一篇    下一篇

阿拉伯木聚糖关键制备工艺及其应用

陈光1,2(),吕江涛1,邱学良2,丁利兵1,蔡宜辰1,陈悦1,刘正学1,王禄山2,*()   

  1. 1. 重庆三峡学院环境与化学工程学院, 重庆 404100
    2. 山东大学微生物技术国家重点实验室, 山东 青岛 266237
  • 收稿日期:2023-11-17 出版日期:2024-11-20 发布日期:2024-11-29
  • 通讯作者: 王禄山 E-mail:1130190215@qq.com;lswang@sdu.edu.cn
  • 作者简介:陈光(1994—),男,硕士研究生,研究方向为环境生态修复. E-mail: 1130190215@qq.com
  • 基金资助:
    国家自然科学基金资助项目(32100022)

Key preparation processes and applications of arabinoxylan

Guang CHEN1,2(),Jiangtao LYU1,Xueliang QIU2,Libing DING1,Yichen CAI1,Yue CHEN1,Zhenxue LIU1,Lushan WANG2,*()   

  1. 1. Chongqing Three Gorges University, Chongqing 404100, China
    2. The State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
  • Received:2023-11-17 Online:2024-11-20 Published:2024-11-29
  • Contact: Lushan WANG E-mail:1130190215@qq.com;lswang@sdu.edu.cn

摘要:

阿拉伯木聚糖(arabinoxylan, AX)是植物细胞壁中半纤维素的重要组成部分, 存在于玉米、小麦、大麦和水稻等谷物中。AX不仅具有抗氧化性、益生元潜力和免疫调节活性, 还具有优异的保水性、良好生物相容性和较好的力学性能, 同时可以转化为清洁能源, 因此, 广泛应用于食品、医疗、工业等领域。AX的生物活性与其化学结构密切相关, 不同来源及不同提取方法得到的AX结构不同, 其功能特性也存在明显差异。本文综述了AX的结构特征及其生物活性、各种原料中的AX提取纯化方法以及AX的应用前景。

关键词: 阿拉伯木聚糖, 制备工艺, 功能特性, 生物合成, 生物基材料

Abstract:

Arabinoxylan (AX) was an important component of hemicellulose in plant cell walls, which wa s found in grains such as corn, wheat, barley and rice. AX not only had antioxidant, prebiotic potential, and immunomodulatory activity but also had water retention, biocompatibility, and mechanical properties. At the same time, it could be converted into clean energy. Therefore, it was widely used in food, medical, industrial, and other fields. The biological activity of AX was closely related to its chemical structure. The fine structures and the functional properties of AX depended on different cereal sources and different extraction methods. In this paper, we summarized several aspects of AX, which contained the structural characteristics, biological activities, serval methods of extraction and purification from various raw materials, and the application.

Key words: arabinoxylan, preparation technology, functional property, biosynthesis, biomaterials

中图分类号: 

  • S-1

表1

不同谷物中AX含量"

谷物 全AX质量分数/% 水可提取AX质量分数/% 提取方法 参考文献
小麦 9.5~13.0 3.1~4.5 碱提取 [7]
大麦 3.5~6.05 0.4~1.0 [8]
燕麦 21.9~33.0 碱提取 [9]
黑麦 6.7~12.1 2.2~4.7 [10]
高粱 2.95~10.82 碱提取 [11]
甘蔗渣 18.28 碱提取 [12]
玉米 22.9 碱提取 [13]

图1

谷物细胞壁组成及阿拉伯木聚糖结构[14]"

表2

各种原料在不同提取方法得到的AX结构"

谷物 提取方法 收率/% 摩尔质量/(kg·mol-1) A/X(质量比) 阿魏酸含量/(mg·g-1) DPPH(EC50) 参考文献
甘蔗渣 0.25 mol/L氢氧化钠, 121 ℃, 30 min 0.08±0.07 [26]
0.5 mol/L氢氧化钠, 121 ℃, 30 min 1.12±0.28 47.00 [26]
1 mol/L氢氧化钠, 121 ℃, 30 min 7.22±0.26 212.00 [26]
2 mol/L氢氧化钠, 121 ℃, 60 min, 连续提取3次 21.70±0.28 212.00 [26]
玉米麸皮 1∶30(W/V), 浓度为0.3 mol/L氢氧化钠, 25 min, 70 ℃, 超声波功率500 W 27.78±0.17 6.30 [27]
1∶30(W/V), 浓度为0.3 mol/L氢氧化钠, 20 min, 70 ℃, 超声波功率400 W 20.45 [27]
1∶30(W/V), 浓度为0.3 mol/L氢氧化钠, 20 min, 70 ℃, 超声波功率500 W 21.45 [27]
1∶30(W/V), 浓度为0.3 mol/L氢氧化钠, 20 min, 70 ℃, 超声波功率600 W 19.24 [27]
1∶25(W/V), 浓度为0.3 mol/L氢氧化钠, 20 min, 70 ℃, 超声波功率500 W 20.55 [27]
1∶35(W/V), 浓度为0.3 mol/L氢氧化钠, 20 min, 70 ℃, 超声波功率500 W 16.68 [27]
麦麸 1∶7(W/V), 纯水, 60 ℃, 30 min, 未处理粒径(2 644 μm) 0.40 403.00 0.48 2.96 [28]
1∶7(W/V), 纯水, 60 ℃, 30 min, 研磨后(749.9 μm) 1.20 134.00 0.44 2.84 [28]
1∶7(W/V), 纯水, 60 ℃, 30 min, 挤压后(285.8 μm) 1.80 345.00 0.434 2.70 [28]
啤酒厂废谷物 1∶7(W/V), 加酶Laminex, 35℃, 6h 25.8±0.40 0.90 [29]
玉米纤维 SWE, 1∶14(W/V), 140 ℃, 30 min, 10~11 MPa 3.20±0.40 171.10 2.35 22.40±1.50 4.46 [30]
SWE, 1∶14(W/V), 160 ℃, 5 min, 10~11 MPa 5.00±1.90 367.10 2.24 14.10±0.20 5.79 [30]
SWE, 1∶14(W/V), 160 ℃, 15 min, 10~11 MPa 8.40±1.50 105.50 1.48 30.30±1.80 5.33 [30]
SWE, 1∶14(W/V), 160 ℃, 30 min, 10~11 MPa 12.20±0.80 57.60 0.99 39.70±0.20 4.63 [30]
SWE, 1∶14(W/V), 160 ℃, 60 min, 10~11 MPa 18.50±0.90 32.90 0.66 47.80±1.40 4.23 [30]
SWE, 1∶14(W/V), 180 ℃, 30 min, 10~11 MPa 18.30±0.80 32.50 0.66 47.90±2.40 3.89 [30]
SWE, 1∶14(W/V), 160 ℃, 30 min, 10~11 MPa, pH 5 1.70±0.10 190.70 0.99 11.90±1.50 8.84 [30]
SWE, 1∶14(W/V), 160 ℃, 30 min, 10~11 MPa, pH 7 3.00±0.30 178.10 0.70 3.90±2.10 6.11 [30]
SWE, 1∶14(W/V), 160 ℃, 30 min, 10~11 MPa, pH 9.2 14.50±0.60 199.80 0.56 4.00±1.00 4.95 [30]
高粱麸皮 饱和氢氧化钙(含1%硼氢化钠), 室温, 16 h 126.60±8.50 1.01 1.00 [31]
废高粱谷物 饱和氢氧化钙(含1%硼氢化钠), 室温, 16 h 126.60±7.30 1.04 0.77 [31]
高粱谷粒 饱和氢氧化钙(含1%硼氢化钠), 室温, 16 h 223.90±10.70 1.28 0.56 [31]
麦麸 1∶10(W/V), 1 mol/L氢氧化钠, 60 ℃, 16 h 761.00 0.69 [32]
1∶10(W/V), 0.5 mol/L氢氧化钡, 60 ℃, 16 h 704.00 0.78 [32]
SWE, 1∶10(W/V), 160 ℃, 10 min, pH为7.0 8.40±1.64 389.00 [32]
SWE, 1∶10(W/V), 160 ℃, 30 min, pH为7.0 111.00 [32]
SWE, 1∶10(W/V), 160 ℃, 60 min, pH为7.0 41.00 [32]

图2

阿拉伯木聚糖提取流程"

图3

木聚糖合成机制及参与合成的特征酶"

1 BRIENZA F , CANNELLA D , MONTESDEOCA D , et al. A guide to lignin valorization in biorefineries: traditional, recent, and forthcoming approaches to convert raw lignocellulose into valuable materials and chemicals[J]. RSC Sustainability, 2024, 2 (1): 37- 90.
doi: 10.1039/D3SU00140G
2 LI Shanshan , CHEN Hong , ZENG Zhen , et al. Arabinoxylan hydrolysates improved physical and oxidative stability of oil-in-water emulsions[J]. International Journal of Biological Macromolecules, 2024, 258, 128798.
doi: 10.1016/j.ijbiomac.2023.128798
3 OOI S L , MICALOS P S , PAK S C . Modified rice bran arabinoxylan as a nutraceutical in health and disease: a scoping review with bibliometric analysis[J]. PLoS One, 2023, 18 (8): e0290314.
doi: 10.1371/journal.pone.0290314
4 LI F , LI T T , ZHAO J J , et al. Unraveling the deterioration mechanism of dough during whole wheat flour processing: a case study of gluten protein containing arabinoxylan with different molecular weights[J]. Food Chemistry, 2024, 432, 137199.
doi: 10.1016/j.foodchem.2023.137199
5 WANG J , BAI J Y , FAN M C , et al. Cereal-derived arabinoxylans: structural features and structure-activity correlations[J]. Trends in Food Science and Technology, 2020, 96, 157- 165.
doi: 10.1016/j.tifs.2019.12.016
6 LU ZJ , L J , CHEN Z X , et al. Carboxymethylation and physicochemical characterization of wheat bran arabinoxylan[J]. Food Science, 2021, 42 (6): 61- 67.
7 KAUR A , SINGH B , YADAV M P , et al. Isolation of arabinoxylan and cellulose-rich arabinoxylan from wheat bran of different varieties and their functionalities[J]. Food Hydrocolloids, 2021, 112, 106287.
doi: 10.1016/j.foodhyd.2020.106287
8 IZYDORCZYK M S , DEXTER J E . Barley beta-glucans and arabinoxylans: molecular structure, physicochemical properties, and uses in food products: a review[J]. Food Research International, 2008, 41 (9): 850- 868.
doi: 10.1016/j.foodres.2008.04.001
9 SAAKE B , ERASMY N , KRUSE T , et al. Isolation and characterization of arabinoxylan from oat spelts[J]. ACS Symposium Series, 2004, 864, 52- 65.
10 KNUDSEN K E B , LAERKE H N . Review: rye arabinoxylans: molecular structure, physicochemical properties and physiological effects in the gastrointestinal tract[J]. Cereal Chemistry, 2010, 87 (4): 353- 362.
doi: 10.1094/CCHEM-87-4-0353
11 MIAFO A P T , KOUBALA B , KANSCI G , et al. Free sugars and non-starch polysaccharides-phenolic acid complexes from bran, spent grain and sorghum seeds[J]. Journal of Cereal Science, 2019, 87, 124- 131.
doi: 10.1016/j.jcs.2019.02.002
12 QIU S , YADAV M P , YIN L J . Characterization and functionalities study of hemicellulose and cellulose components isolated from sorghum bran, bagasse and biomass[J]. Food Chemistry, 2017, 230, 225- 233.
doi: 10.1016/j.foodchem.2017.03.028
13 YUE Z , SUN L L , SUN S N , et al. Structure of corn bran hemicelluloses isolated with aqueous ethanol solutions and their potential to produce furfural[J]. Carbohydrate Polymers, 2022, 288, 119420.
doi: 10.1016/j.carbpol.2022.119420
14 RUTHES A C , RUDJITO R C , RENCORET J , et al. Comparative recalcitrance and extractability of cell wall polysaccharides from cereal (wheat, rye, and barley) brans using subcritical water[J]. ACS Sustainable Chemistry & Engineering, 2020, 8 (18): 7192- 7204.
15 MALUNGA L N , IZYDORCZYK M , BETA T . Effect of water-extractable arabinoxylans from wheat aleurone and bran on lipid peroxidation and factors influencing their antioxidant capacity[J]. Bioactive Carbohydrates and Dietary Fibre, 2017, 10, 20- 26.
doi: 10.1016/j.bcdf.2017.05.001
16 XIAO X Y , QIAO J L , WANG J , et al. Grafted ferulic acid dose-dependently enhanced the apparent viscosity and antioxidant activities of arabinoxylan[J]. Food Hydrocolloids, 2022, 128, 107557.
doi: 10.1016/j.foodhyd.2022.107557
17 CHEN Z Y , LI S S , FU Y F , et al. Arabinoxylan structural characteristics, interaction with gut microbiota and potential health functions[J]. Journal of Functional Foods, 2019, 54, 536- 551.
doi: 10.1016/j.jff.2019.02.007
18 GU I , LAM W S , MARASINI D , et al. In vitro fecal fermentation patterns of arabinoxylan from rice bran on fecal microbiota from normal-weight and overweight/obese subjects[J]. Nutrients, 2021, 13 (6): 2052.
doi: 10.3390/nu13062052
19 ZHANG Z Y , YANG P , ZHAO J B . Ferulic acid mediates prebiotic responses of cereal-derived arabinoxylans on host health[J]. Animal Nutrition, 2021, 9, 31- 38.
doi: 10.3920/JAAN2020.0017
20 BROEKAERT W F , COURTIN C M , VERBEKE K , et al. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides[J]. Critical Reviews in Food Science and Nutrition, 2011, 51 (2): 178- 194.
doi: 10.1080/10408390903044768
21 CHANG X , SHEN C Y , JIANG J G . Structural characterization of novel arabinoxylan and galactoarabinan from citron with potential antitumor and immunostimulatory activities[J]. Carbohydrate Polymers, 2021, 269, 118331.
doi: 10.1016/j.carbpol.2021.118331
22 GOVERS C , TANG Y F , STOLTE E H , et al. Wheat-derived arabinoxylans reduced M2-macrophage functional activity, but enhanced monocyte-recruitment capacity[J]. Food & Function, 2020, 11 (8): 7073- 7083.
23 WAN L J , YUAN Z Z , WU B , et al. Dissolution behavior of arabinoxylan from sugarcane bagasse in tetrabutylammonium hydroxide aqueous solution[J]. Carbohydrate Polymers, 2022, 282, 119037.
doi: 10.1016/j.carbpol.2021.119037
24 ROBERT B , CHENTHAMARA D , SUBRAMANIAM S . Fabrication and biomedical applications of arabinoxylan, pectin, chitosan, soy protein, and silk fibroin hydrogels via laccase-ferulic acid redox chemistry[J]. International Journal of Biological Macromolecules, 2022, 201, 539- 556.
doi: 10.1016/j.ijbiomac.2021.12.103
25 SCHMIDT M , WIEGE B , HOLLMANN J . Comparison of alkaline/oxidative and hydrothermal extraction of wheat bran arabinoxylans[J]. Foods, 2021, 10 (4): 826.
doi: 10.3390/foods10040826
26 KHALEGHIPOUR L , LINARES-PASTÉN J A , RASHEDI H , et al. Extraction of sugarcane bagasse arabinoxylan, integrated with enzymatic production of xylo-oligosaccharides and separation of cellulose[J]. Biotechnology for Biofuels, 2021, 14 (1): 153.
doi: 10.1186/s13068-021-01993-z
27 JIANG Y Y , BAI X , LANG S M , et al. Optimization of ultrasonic-microwave assisted alkali extraction of arabinoxylan from the corn bran using response surface methodology[J]. International Journal of Biological Macromolecules, 2019, 128, 452- 458.
doi: 10.1016/j.ijbiomac.2019.01.138
28 DEMUTH T , BETSCHART J , NYSTRÖM L . Structural modifications to water-soluble wheat bran arabinoxylan through milling and extrusion[J]. Carbohydrate Polymers, 2020, 240, 116328.
doi: 10.1016/j.carbpol.2020.116328
29 LYNCH K M , STRAIN C R , JOHNSON C , et al. Extraction and characterisation of arabinoxylan from brewers spent grain and investigation of microbiome modulation potential[J]. European Journal of Nutrition, 2021, 60 (8): 4393- 4411.
doi: 10.1007/s00394-021-02570-8
30 RUDJITO R C , JIM É NEZ-QUERO A , HAMZAOUI M , et al. Tuning the molar mass and substitution pattern of complex xylans from corn fibre using subcritical water extraction[J]. Green Chemistry, 2020, 22 (23): 8337- 8352.
doi: 10.1039/D0GC02897E
31 TAKOUDJOU M A P , GUDIPATI M , BARGUI K B , et al. Purification and structural characterization of calcium hydroxide isolated arabinoxylans derived from bran, spent grain and sorghum grains[J]. Journal of Cereal Science, 2021, 100, 23- 27.
32 RUDJITO R C , RUTHES A C , JIMÉNEZ-QUERO A , et al. Feruloylated arabinoxylans from wheat bran: optimization of extraction process and validation at pilot scale[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (15): 13167- 13177.
33 DALVEER K , GISHA S , UMESH S , et al. Efficient process engineering for extraction of hemicellulose from corn fiber and its characterization[J]. Carbohydrate Polymer Technologies and Applications, 2020, 1, 100011.
doi: 10.1016/j.carpta.2020.100011
34 ANDREA R S , CLARA F , TORRADO A M , et al. Extraction of the wheat straw hemicellulose fraction assisted by commercial endo-xylanases: role of the accessory enzyme activities[J]. Industrial Crops & Products, 2022, 179, 114655.
35 PIHLAJANIEMI V , MATTILA O , KOITTO T , et al. Production of syrup rich in arabinoxylan oligomers and antioxidants from wheat bran by alkaline pretreatment and enzymatic hydrolysis, and applicability in baking[J]. Journal of Cereal Science, 2020, 95, 1- 11.
36 MA F M , LI X L , YIN J Y , et al. Optimisation of double-enzymatic extraction of arabinoxylan from fresh corn fibre[J]. Journal of Food Science and Technology, 2020, 57 (12): 4649- 4659.
doi: 10.1007/s13197-020-04502-6
37 RUTHES A C , MARTÍNEZ-ABAD A , TAN H T , et al. Sequential fractionation of feruloylated hemicelluloses and oligosaccharides from wheat bran using subcritical water and xylanolytic enzymes[J]. Green Chemistry, 2017, 19 (8): 1919- 1931.
doi: 10.1039/C6GC03473J
38 SMITH P J , WANG H T , YORK W S , et al. Designer biomass for next-generation biorefineries: leveraging recent insights into xylan structure and biosynthesis[J]. Biotechnology for Biofuels, 2017, 10, 286.
doi: 10.1186/s13068-017-0973-z
39 ZABOTINA O A , ZHANG N , WEERTS R . Polysaccharide biosynthesis: glycosyltransferases and their complexes[J]. Frontiers in Plant Science, 2021, 12, 625307.
doi: 10.3389/fpls.2021.625307
40 RENNIE E A , SCHELLER H V . Xylan biosynthesis[J]. Current Opinion in Biotechnology, 2014, 26, 100- 107.
doi: 10.1016/j.copbio.2013.11.013
41 CURRY T M , PE A M J , URBANOWICZ B R . An update on xylan structure, biosynthesis, and potential commercial applications[J]. Cell Surface, 2023, 9, 100101.
doi: 10.1016/j.tcsw.2023.100101
42 LI J , LU Z J , CHEN Z X , et al. Preparation and characterization of pH-responsive microgel using arabinoxylan from wheat bran for BSA delivery[J]. Food Chemistry, 2021, 342, 128220.
doi: 10.1016/j.foodchem.2020.128220
43 MORALES-BURGOS A M , CARVAJAL-MILLAN E , SOTELO-CRUZ N , et al. Highly cross-linked arabinoxylans microspheres as a microbiota-activated carrier for colon-specific insulin delivery[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 16- 22.
doi: 10.1016/j.ejpb.2021.02.014
44 WU Y , ZHANG G Y . Synbiotic encapsulation of probiotic Latobacillus plantarum by alginate-arabinoxylan composite microspheres[J]. LWT: Food Science and Technology, 2018, 93, 135- 141.
doi: 10.1016/j.lwt.2018.03.034
45 MOREIRINHA C , VILELA C , SILVA N H , et al. Antioxidant and antimicrobial films based on brewers spent grain Arabinoxylans, nanocellulose and feruloylated compounds for active packaging[J]. Food Hydrocolloids, 2020, 108, 105836.
doi: 10.1016/j.foodhyd.2020.105836
46 YING R F , LI T , WU C E , et al. Preparation and characterisation of arabinoxylan and (1, 3)(1, 4)-beta-glucan alternating multilayer edible films simulated those of wheat grain aleurone cell wall[J]. International Journal of Food Science and Technology, 2021, 56 (7): 3188- 3196.
doi: 10.1111/ijfs.14848
47 KHAN M U A , HAIDER S , RAZA M A , et al. Smart and pH-sensitive rGO/arabinoxylan/chitosan composite for wound dressing: in-vitro drug delivery, antibacterial activity, and biological activities[J]. International Journal of Biological Macromolecules, 2021, 192, 820- 831.
doi: 10.1016/j.ijbiomac.2021.10.033
48 ASLAMKHAN M U , HAIDER A , ABD RAZAK S I , et al. Arabinoxylan/graphene-oxide/nHAp-NPs/PVA bionano composite scaffolds for fractured bone healing[J]. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15 (4): 322- 335.
doi: 10.1002/term.3168
49 SONG Zhaolin , LI Miaomiao , DU Jinhua , et al. Effects of non-starch polysaccharides from pure wheat malt beer on beer quality, in vitro antioxidant, prebiotics, hypoglycemic and hypolipidemic properties[J]. Food Bioscience, 2022, 47, 101780.
doi: 10.1016/j.fbio.2022.101780
50 ZANNINI E , NUęÑEZÁ B , SAHIN A W , et al. Arabinoxylans as functional food ingredients: a review[J]. Foods, 2022, 11 (7): 1026.
doi: 10.3390/foods11071026
51 KAMEL R , AFIFI S M , KASSEM I A A , et al. Arabinoxylan and rhamnogalacturonan mucilage: outgoing and potential trends of pharmaceutical, environmental, and medicinal merits[J]. International Journal of Biological Macromolecules, 2020, 165 (Pt B): 2550- 2564.
52 MENDIS M , LECLERC E , SIMSEK S . Arabinoxylans, gut microbiota and immunity[J]. Carbohydrate Polymers, 2016, 139, 159- 166.
doi: 10.1016/j.carbpol.2015.11.068
53 WANG H , HUANG X J , TAN H Z , et al. Interaction between dietary fiber and bifidobacteria in promoting intestinal health[J]. Food Chemistry, 2022, 393, 133407.
doi: 10.1016/j.foodchem.2022.133407
54 ZHANG B J , ZHONG Y D , DONG D J , et al. Gut microbial utilization of xylan and its implication in gut homeostasis and metabolic response[J]. Carbohydrate Polymers, 2022, 286, 119271.
doi: 10.1016/j.carbpol.2022.119271
55 NURIA S B , IRINA D , ESTHER A . From biomass to sugar alcohols: purification of wheat bran hydrolysates using boronic acid carriers followed by hydrogenation of sugars over Ru/H-ZSM-5[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (9): 11930- 11938.
56 GÍRIO F M , FONSECA C , CARVALHEIRO F , et al. Hemicelluloses for fuel ethanol: a review[J]. Bioresource Technology, 2010, 101 (13): 4775- 4800.
doi: 10.1016/j.biortech.2010.01.088
57 LÓPEZ-MALDONADO E A , OROPEZA-GUZMÁN M . Nejayote biopolyelectrolytes multifunctionality (glucurono ferulauted arabinoxylans) in the separation of hazardous metal ions from industrial wastewater[J]. Chemical Engineering Journal, 2021, 423, 130210.
doi: 10.1016/j.cej.2021.130210
58 JAHAN A A , GONZÁLEZ ORTIZ G , MOSS A F , et al. Role of supplemental oligosaccharides in poultry diets[J]. World's Poultry Science Journal, 2022, 78 (3): 615- 639.
doi: 10.1080/00439339.2022.2067805
59 XU Y T , BOLVIG A K , MCCARTHY-SINCLAIR B , et al. The role of rye bran and antibiotics on the digestion, fermentation process and short-chain fatty acid production and absorption in an intact pig model[J]. Food & Function, 2021, 12 (7): 2886- 2900.
60 LI Y , YUAN W , ZHANG Y , et al. Single or combined effects of dietary arabinoxylan-oligosaccharide and inulin on growth performance, gut microbiota, and immune response in Pacific white shrimp Litopenaeus vannamei[J]. Journal of Oceanology and Limnology, 2021, 39 (2): 741- 754.
doi: 10.1007/s00343-020-9083-z
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[2] 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20 -22 .
[3] 程李晴1,2, 石巧连2. 一种新的混合共轭梯度算法[J]. J4, 2010, 45(6): 81 -85 .
[4] 霍玉洪,季全宝. 一类生物细胞系统钙离子振荡行为的同步研究[J]. J4, 2010, 45(6): 105 -110 .
[5] 石长光 . Faddeev模型中的多孤立子解[J]. J4, 2007, 42(7): 38 -40 .
[6] 马继雄,江莉,祁驭矜,向凤宁,夏光敏 . 祁连龙胆愈伤组织和再生植株的生长及其两种药效成分分析[J]. J4, 2006, 41(6): 157 -160 .
[7] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[8] 马建玲 . 菱体型消色差相位延迟器的光谱特性分析[J]. J4, 2007, 42(7): 27 -29 .
[9] 王康 李华. 化学计量学方法用于蛤青注射色谱数据重叠峰的分辨[J]. J4, 2009, 44(11): 16 -20 .
[10] 陈 莉, . 非方广义系统带干扰抑制的奇异LQ次优控制问题[J]. J4, 2006, 41(2): 74 -77 .