《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (5): 67-73.doi: 10.6040/j.issn.1671-9352.0.2023.502
• • 上一篇
袁一丹,惠小静Symbolj@@,王前
YUAN Yidan, HUI XiaojingSymbolj@@, WANG Qian
摘要: 利用伪距离定义一阶逻辑度量空间中3种不同近似推理模式,证明不同近似推理模式之间的等价性,给出一种基于相似度的近似推理模式Γδα,研究该推理模式与3种不同近似推理模式之间的关系,最后提出强近似推理模式。
中图分类号:
[1] 王国俊,傅丽,宋建社. 二值命题逻辑中命题的真度理论[J]. 中国科学(A辑:数学), 2001, 31(11):998-1008. WANG Guojun, FU Li, SONG Jianshe. Theory of truth degrees of propositions in two-valued logic[J]. Science in China(Series A: Mathematics), 2001, 31(11):998-1008. [2] 王国俊,李璧镜. Łukasiewicz n值命题逻辑中公式的真度理论和极限定理[J]. 中国科学(E辑:信息科学), 2005, 35(6):561-569. WANG Guojun, LI Bijing. Theory of truth degrees of formulas in Łukasiewicz n-value propositional logic and a limit theorem[J]. Science in China(Series E: Information Sciences), 2005, 35(6):561-569. [3] 李骏,王国俊. 逻辑系统L*n中命题的真度理论[J]. 中国科学(E辑:信息科学), 2006, 36(6):631-643. LI Jun,WANG Guojun. Theory of propositional truth degrees in logic system L*n[J]. Science in China(Series E: Information Sciences), 2006, 36(6):631-643. [4] 折延宏,王国俊. 三值命题逻辑系统L*3中逻辑理论性态的拓扑刻画[J]. 数学学报, 2009, 52(6):1225-1234. SHE Yanhong, WANG Guojun. Topological characterizations of properties of logic theories in three-valued propositional logic system L*3[J]. Acta Mathematica Sinica, 2009, 52(6):1225-1234. [5] 周红军,王国俊. Borel型概率计量逻辑[J]. 中国科学(信息科学), 2011, 41(11):1328-1342. ZHOU Hongjun, WANG Guojun. Borel probabilistic and quantitative logic[J]. Scientia Sinica(Informationis), 2011, 41(11):1328-1342. [6] 裴道武. 基于三角模的模糊逻辑理论及其应用[M]. 北京:科学出版社, 2013:18-219. PEI Daowu. Fuzzy logic theory based on triangular module and its application[M]. Beijing: Science Press, 2013:18-219. [7] 吴洪博,周建仁. 计量逻辑中真度的均值表示形式及应用[J]. 电子学报, 2012, 40(9):1822-1828. WU Hongbo, ZHOU Jianren. The form of mean representation of truth degree with application in quantitative logic[J]. Acta Electronica Sinica, 2012, 40(9):1822-1828. [8] 王庆平,王国俊. 计量逻辑学中的线性逻辑公式[J]. 陕西师范大学学报(自然科学版), 2012, 40(2):1-5. WANG Qingping, WANG Guojun. Linear logic formulae in the theory of quantitative logic[J]. Journal of Shaanxi Normal University(Nature Science Edition), 2012, 40(2):1-5. [9] 赵彬,于鹏. 多值逻辑中基于Camberra模糊距离的计量化方法[J]. 电子学报, 2018, 46(10):2305-2315. ZHAO Bin, YU Peng. A kind of quantitative method based on Camberra fuzzy distance in multiple-valued logic[J]. Acta Electronica Sinica, 2018, 46(10):2305-2315. [10] WANG Guojun, ZHOU Hongjun. Quantitative logic[J]. Information Sciences, 2009, 179(3):226-247. [11] 王国俊. 数理逻辑引论与归结原理[M]. 北京:科学出版社, 2006:41-82. WANG Guojun. Introduction to mathematical logic and resolution principle[M]. Beijing: Science Press, 2006:41-82. [12] 惠小静,王国俊. 经典推理模式的随机化研究及其应用[J]. 中国科学(E辑:信息科学), 2007, 37(6):801-812. HUI Xiaojing, WANG Guojun. Randomization of classical inference patterns and its application[J]. Science in China(Series E: Informationis), 2007, 37(6):801-812. [13] 刘保翠,王国俊. 二值命题逻辑中的三种Γ-近似推理模式及其等价性[J]. 模糊系统与数学,2008,22(2):10-17. LIU Baocui, WANG Guojun. Three models of Γ-approximate reasoning and their equivalence in classical propositional logic[J]. Fuzzy Systems and Mathematics, 2008, 22(2):10-17. [14] 左卫兵. n值命题逻辑中的P-随机真度及近似推理[J]. 计算机工程与应用,2009,45(7):42-43. ZUO Weibing. P-randomized truth degrees and approximate reasoning in n-valued logic system[J]. Computer Engineering and Applications, 2009, 45(7):42-43. [15] 张家录,陈雪刚,赵晓东.经典命题逻辑的概率语义及其应用[J]. 计算机学报,2014,37(8):1775-1785. ZHANG Jialu, CHEN Xuegang, ZHAO Xiaodong. Theory of probability semantics of classical propositional logic and its application[J]. Chinese Journal of Computers, 2014, 37(8):1775-1785. [16] ESTEVA F, GODO L, RODRIGUEZ R O, et al. Logics for approximate and strong entailments[J]. Fuzzy Sets and Systems, 2012, 197(16):59-70. [17] 罗清君,王国俊. 经典命题逻辑中的近似推理与强近似推理[J]. 模糊系统与数学, 2012, 26(4):20-24. LUO Qingjun, WANG Guojun. Approximate and strong entailments in classical propositional logic system[J]. Fuzzy Systems and Mathematics, 2012, 26(4):20-24. [18] 王国俊. 一类一阶逻辑公式中的公理化真度理论及其应用[J]. 中国科学(信息科学), 2012, 42(5):648-662. WANG Guojun. Axiomatic theory of truth degree for a class of first-order formulas and its application[J]. Scientia Sinica(Informationis), 2012, 42(5):648-662. |
[1] | 龚加安,吴洪博. 模态逻辑系统S4中的度量结构[J]. 山东大学学报(理学版), 2016, 51(2): 108-113. |
[2] | 宋爽, 那日萨, 张杨. 基于在线评论的消费者品牌转换意向模糊推理[J]. 山东大学学报(理学版), 2014, 49(12): 7-11. |
[3] | 左卫兵. 模糊命题逻辑L*中公式的条件随机真度[J]. J4, 2012, 47(6): 121-126. |
[4] | 张乐,裴道武. 命题逻辑中理论的条件真度[J]. J4, 2012, 47(2): 82-85. |
[5] | 崔美华. 逻辑系统G3中命题的D-条件真度与近似推理[J]. J4, 2010, 45(11): 52-58. |
[6] | 刘华文,,王国俊,张诚一 . 几种逻辑系统中的近似推理理论[J]. J4, 2007, 42(7): 77-81 . |
|