您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (5): 67-73.doi: 10.6040/j.issn.1671-9352.0.2023.502

• • 上一篇    

一阶逻辑中的近似推理与强近似推理Symbol`@@

袁一丹,惠小静Symbolj@@,王前   

  1. 延安大学数学与计算机科学学院, 陕西 延安 716000
  • 发布日期:2025-05-19
  • 通讯作者: 惠小静(1973— ),女,教授,研究生导师,博士,研究方向为数理逻辑与不确定性推理. E-mail:xhmxiaojing@163.com
  • 作者简介:袁一丹(2000— ),女,硕士研究生,研究方向为数理逻辑与不确定性推理. E-mail:1757628434@qq.com*通信作者:惠小静(1973— ),女,教授,研究生导师,博士,研究方向为数理逻辑与不确定性推理. E-mail:xhmxiaojing@163.com
  • 基金资助:
    国家自然科学基金资助项目(12261090)

Approximate reasoning and strong approximate reasoning in first-order logic

YUAN Yidan, HUI XiaojingSymbolj@@, WANG Qian   

  1. School of Mathematics and Computer Science, Yanan University, Yanan 716000, Shaanxi, China
  • Published:2025-05-19

摘要: 利用伪距离定义一阶逻辑度量空间中3种不同近似推理模式,证明不同近似推理模式之间的等价性,给出一种基于相似度的近似推理模式Γδα,研究该推理模式与3种不同近似推理模式之间的关系,最后提出强近似推理模式。

关键词: 一阶逻辑, 公理化真度, 近似推理, 强近似推理

Abstract: In the first-order logical metric space, three different types of approximate reasoning patterns are defined based on pseudo distance, and the equivalence relationship between the three approximate reasoning patterns is proved. In addition, a new approximate reasoning mode Γδα is proposed based on similarity, and the relationship between this reasoning mode and three reasoning modes is studied. Finally, a strong approximate reasoning mode is proposed.

Key words: first-order logic, axiomatic truth degree, approximate reasoning, strong approximate reasoning

中图分类号: 

  • O159
[1] 王国俊,傅丽,宋建社. 二值命题逻辑中命题的真度理论[J]. 中国科学(A辑:数学), 2001, 31(11):998-1008. WANG Guojun, FU Li, SONG Jianshe. Theory of truth degrees of propositions in two-valued logic[J]. Science in China(Series A: Mathematics), 2001, 31(11):998-1008.
[2] 王国俊,李璧镜. Łukasiewicz n值命题逻辑中公式的真度理论和极限定理[J]. 中国科学(E辑:信息科学), 2005, 35(6):561-569. WANG Guojun, LI Bijing. Theory of truth degrees of formulas in Łukasiewicz n-value propositional logic and a limit theorem[J]. Science in China(Series E: Information Sciences), 2005, 35(6):561-569.
[3] 李骏,王国俊. 逻辑系统L*n中命题的真度理论[J]. 中国科学(E辑:信息科学), 2006, 36(6):631-643. LI Jun,WANG Guojun. Theory of propositional truth degrees in logic system L*n[J]. Science in China(Series E: Information Sciences), 2006, 36(6):631-643.
[4] 折延宏,王国俊. 三值命题逻辑系统L*3中逻辑理论性态的拓扑刻画[J]. 数学学报, 2009, 52(6):1225-1234. SHE Yanhong, WANG Guojun. Topological characterizations of properties of logic theories in three-valued propositional logic system L*3[J]. Acta Mathematica Sinica, 2009, 52(6):1225-1234.
[5] 周红军,王国俊. Borel型概率计量逻辑[J]. 中国科学(信息科学), 2011, 41(11):1328-1342. ZHOU Hongjun, WANG Guojun. Borel probabilistic and quantitative logic[J]. Scientia Sinica(Informationis), 2011, 41(11):1328-1342.
[6] 裴道武. 基于三角模的模糊逻辑理论及其应用[M]. 北京:科学出版社, 2013:18-219. PEI Daowu. Fuzzy logic theory based on triangular module and its application[M]. Beijing: Science Press, 2013:18-219.
[7] 吴洪博,周建仁. 计量逻辑中真度的均值表示形式及应用[J]. 电子学报, 2012, 40(9):1822-1828. WU Hongbo, ZHOU Jianren. The form of mean representation of truth degree with application in quantitative logic[J]. Acta Electronica Sinica, 2012, 40(9):1822-1828.
[8] 王庆平,王国俊. 计量逻辑学中的线性逻辑公式[J]. 陕西师范大学学报(自然科学版), 2012, 40(2):1-5. WANG Qingping, WANG Guojun. Linear logic formulae in the theory of quantitative logic[J]. Journal of Shaanxi Normal University(Nature Science Edition), 2012, 40(2):1-5.
[9] 赵彬,于鹏. 多值逻辑中基于Camberra模糊距离的计量化方法[J]. 电子学报, 2018, 46(10):2305-2315. ZHAO Bin, YU Peng. A kind of quantitative method based on Camberra fuzzy distance in multiple-valued logic[J]. Acta Electronica Sinica, 2018, 46(10):2305-2315.
[10] WANG Guojun, ZHOU Hongjun. Quantitative logic[J]. Information Sciences, 2009, 179(3):226-247.
[11] 王国俊. 数理逻辑引论与归结原理[M]. 北京:科学出版社, 2006:41-82. WANG Guojun. Introduction to mathematical logic and resolution principle[M]. Beijing: Science Press, 2006:41-82.
[12] 惠小静,王国俊. 经典推理模式的随机化研究及其应用[J]. 中国科学(E辑:信息科学), 2007, 37(6):801-812. HUI Xiaojing, WANG Guojun. Randomization of classical inference patterns and its application[J]. Science in China(Series E: Informationis), 2007, 37(6):801-812.
[13] 刘保翠,王国俊. 二值命题逻辑中的三种Γ-近似推理模式及其等价性[J]. 模糊系统与数学,2008,22(2):10-17. LIU Baocui, WANG Guojun. Three models of Γ-approximate reasoning and their equivalence in classical propositional logic[J]. Fuzzy Systems and Mathematics, 2008, 22(2):10-17.
[14] 左卫兵. n值命题逻辑中的P-随机真度及近似推理[J]. 计算机工程与应用,2009,45(7):42-43. ZUO Weibing. P-randomized truth degrees and approximate reasoning in n-valued logic system[J]. Computer Engineering and Applications, 2009, 45(7):42-43.
[15] 张家录,陈雪刚,赵晓东.经典命题逻辑的概率语义及其应用[J]. 计算机学报,2014,37(8):1775-1785. ZHANG Jialu, CHEN Xuegang, ZHAO Xiaodong. Theory of probability semantics of classical propositional logic and its application[J]. Chinese Journal of Computers, 2014, 37(8):1775-1785.
[16] ESTEVA F, GODO L, RODRIGUEZ R O, et al. Logics for approximate and strong entailments[J]. Fuzzy Sets and Systems, 2012, 197(16):59-70.
[17] 罗清君,王国俊. 经典命题逻辑中的近似推理与强近似推理[J]. 模糊系统与数学, 2012, 26(4):20-24. LUO Qingjun, WANG Guojun. Approximate and strong entailments in classical propositional logic system[J]. Fuzzy Systems and Mathematics, 2012, 26(4):20-24.
[18] 王国俊. 一类一阶逻辑公式中的公理化真度理论及其应用[J]. 中国科学(信息科学), 2012, 42(5):648-662. WANG Guojun. Axiomatic theory of truth degree for a class of first-order formulas and its application[J]. Scientia Sinica(Informationis), 2012, 42(5):648-662.
[1] 龚加安,吴洪博. 模态逻辑系统S4中的度量结构[J]. 山东大学学报(理学版), 2016, 51(2): 108-113.
[2] 宋爽, 那日萨, 张杨. 基于在线评论的消费者品牌转换意向模糊推理[J]. 山东大学学报(理学版), 2014, 49(12): 7-11.
[3] 左卫兵. 模糊命题逻辑L*中公式的条件随机真度[J]. J4, 2012, 47(6): 121-126.
[4] 张乐,裴道武. 命题逻辑中理论的条件真度[J]. J4, 2012, 47(2): 82-85.
[5] 崔美华. 逻辑系统G3中命题的D-条件真度与近似推理[J]. J4, 2010, 45(11): 52-58.
[6] 刘华文,,王国俊,张诚一 . 几种逻辑系统中的近似推理理论[J]. J4, 2007, 42(7): 77-81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!