您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (2): 108-113.doi: 10.6040/j.issn.1671-9352.0.2015.135

• • 上一篇    下一篇

模态逻辑系统S4中的度量结构

龚加安,吴洪博*   

  1. 陕西师范大学数学与信息科学学院, 陕西 西安 710062
  • 收稿日期:2015-03-30 出版日期:2016-02-16 发布日期:2016-03-11
  • 通讯作者: 吴洪博(1959— ),男,博士,教授,研究方向为格上拓扑与模糊推理. E-mail:wuhb@snnu.edu.cn E-mail:sxslgongke@163.com
  • 作者简介:龚加安(1975— ),男,硕士,研究方向为格上拓扑与模糊推理. E-mail:sxslgongke@163.com
  • 基金资助:
    国家自然科学基金重点项目(11531009);国家自然科学基金面上项目(61572016)

Metric structure in modal logic system S4

GONG Jia-an, WU Hong-bo*   

  1. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710062, Shaanxi, China
  • Received:2015-03-30 Online:2016-02-16 Published:2016-03-11

摘要: 在模态逻辑S4中通过有限模型建立了模态公式的(n)真度理论,研究了模态逻辑S4中命题的(n)真度的性质提出了模态公式间的(n)相似度理论,并由此在全体公式集中,建立了(n)伪距离, 得出了(n)模态逻辑S4的度量空间,该空间以经典逻辑度量空间为子空间,提出了一种模态逻辑S4中近似推理的框架。

关键词: (n)真度, 模态逻辑, 近似推理

Abstract: The theory of(n)truth degrees of formulas is proposed in modal logic system S4. Some properties of(n)truth are investigated in modal logic system S4. The theory of(n)similarity degrees among modal formulas is proposed and a pseudo-metric is defined thereform on the set of all formulas. The(n)modal logic metric space is derived therefrom which contains the classical logic metric space as a subspace. Finally, a kind of approximate reasoning theory is proposed in modal logic system S4.

Key words: modal logic, (n)truth degrees, approximate reasoning

中图分类号: 

  • O141.1
[1] ROSSER J B, TURQUETTE A R. Many-valued logics[M]. Amsterdam: North-Holland, 1952.
[2] PAVELKA J. On fuzzy logic Ⅰ,Ⅱ,Ⅲ[J]. Zeitschr Math Logik und Grundl der Math, 1979, 25:45-52; 119-134; 447-464.
[3] DE GLAS M. Knowledge representation in a fuzzy setting[R]. Laforia University of Pairs VI, 1989.
[4] YING Mingsheng. A logic for approximate reasoning[J]. J Symbolic Logic, 1994, 59:830-837.
[5] 王国俊.修正的Kleene系统中的Σ-(α-重言式)的理论[J].中国科学:E辑 技术科学,1998,28(2):146-152. WANG Guojun.The theory of Σ-(α-tautologies)in revised kleens system[J]. Science in China: Series E Technological Sciences,1998, 28(2):146-152.
[6] 王国俊,傅丽,宋建社.二值命题逻辑中命题的真度理论[J].中国科学:A辑 数学,2001, 31(11):998-1008. WANG Guojun, FU LI, SONG Jianshe. The theory of true degree in two-valued propositional logic[J]. Science in China: Series A Mathematics, 2001, 31(11):998-1008.
[7] 王国俊.非经典数理逻辑与近似推理[M].2版.北京:科学出版社,2006. WANG Guojun. Non-classical mathematical logic and approximate reasoning[M]. 2nd. Beijing: Science Press, 2006.
[8] 王国俊.数理逻辑引论与归结原理[M].2版.北京:科学出版社,2006. WANG Guojun. An introduction to mathematical logic and resolution principle[M]. 2nd. Beijing: Science Press, 2006.
[9] 吴洪博.Gödel系统中的广义重言式理论[J].模糊系统与数学, 2000,14(4):53-59. WU Hongbo. Theory of generalized tautology in Gödel logic system[J]. Fuzzy Systems and Mathematics, 2000, 14(4):53-69.
[10] 吴洪博. 基础R0代数与基础L*系统[J]. 数学进展, 2003, 32(5):565-576. WU Hongbo. Bassis R0-algebra and bassis L* system[J]. Adwances in Mathematics, 2003, 32(5):565-576.
[11] WU Hongbo. Theory of generalized tautology in revised Kleen system[J]. Science in China: Series E, 2001, 44(3):233-238.
[12] 李玲玲,吴洪博.BR0-分配性及其推广[J]. 山东大学学报(理学版), 2012, 47(2):93-97. LI Lingling, WU Hongbo. BR0-distributivity and its generalization[J]. Journal of Shandong University(Natural Science), 2012, 47(2):93-97.
[13] 周建仁,吴洪博.WBR0-代数的正则性及与其他逻辑代数的关系[J]. 山东大学学报(理学版), 2012, 47(2):86-92. ZHOU Jianren, WU Hongbo. The regularness of WBR0-algebras and relationship with other logic algebras[J].Journal of Shandong University(Natural Science), 2012, 47(2):86-92.
[14] 汪宁,吴洪博.SWBR0-代数的蕴涵理想及其诱导的商代数[J]. 吉林大学学报(理学版), 2013, 51(1):21-26. WANG Ning, WU Hongbo. Implication ideal with derived quotiend algebra of SWBR0-algebra[J]. Journal of Jilin University(Natural Science), 2013, 51(1):21-26.
[15] 王国俊,段巧林. 模态逻辑中的(n)真度理论与和谐定理[J]. 中国科学:F辑 信息科学,2009,39(2):234-245. WANG Guojun, DUANG Qiaolin. Theory of(n)truth degree of formulas in modal logic and a consistency theorem[J]. Science in China: Series F Information Sciences, 2009, 39(2):234-245.
[16] BLACKBURN P, RIJKE M, VENEMA Y. Modal Logic[M]. Cambridge: Cambridge University Press, 2001.
[1] 宋爽, 那日萨, 张杨. 基于在线评论的消费者品牌转换意向模糊推理[J]. 山东大学学报(理学版), 2014, 49(12): 7-11.
[2] 左卫兵. 模糊命题逻辑L*中公式的条件随机真度[J]. J4, 2012, 47(6): 121-126.
[3] 张乐,裴道武. 命题逻辑中理论的条件真度[J]. J4, 2012, 47(2): 82-85.
[4] 崔美华. 逻辑系统G3中命题的D-条件真度与近似推理[J]. J4, 2010, 45(11): 52-58.
[5] 邹尚田 王国俊. 模糊模态逻辑系统M?uk中的可达广义重言式[J]. J4, 2009, 44(8): 80-85.
[6] 段景瑶 王国俊. 关于K的三种模糊模态逻辑[J]. J4, 2008, 43(12): 31-39.
[7] 刘华文,,王国俊,张诚一 . 几种逻辑系统中的近似推理理论[J]. J4, 2007, 42(7): 77-81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!