山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (2): 108-113.doi: 10.6040/j.issn.1671-9352.0.2015.135
龚加安,吴洪博*
GONG Jia-an, WU Hong-bo*
摘要: 在模态逻辑S4中通过有限模型建立了模态公式的(n)真度理论,研究了模态逻辑S4中命题的(n)真度的性质。提出了模态公式间的(n)相似度理论,并由此在全体公式集中,建立了(n)伪距离, 得出了(n)模态逻辑S4的度量空间,该空间以经典逻辑度量空间为子空间,提出了一种模态逻辑S4中近似推理的框架。
中图分类号:
[1] ROSSER J B, TURQUETTE A R. Many-valued logics[M]. Amsterdam: North-Holland, 1952. [2] PAVELKA J. On fuzzy logic Ⅰ,Ⅱ,Ⅲ[J]. Zeitschr Math Logik und Grundl der Math, 1979, 25:45-52; 119-134; 447-464. [3] DE GLAS M. Knowledge representation in a fuzzy setting[R]. Laforia University of Pairs VI, 1989. [4] YING Mingsheng. A logic for approximate reasoning[J]. J Symbolic Logic, 1994, 59:830-837. [5] 王国俊.修正的Kleene系统中的Σ-(α-重言式)的理论[J].中国科学:E辑 技术科学,1998,28(2):146-152. WANG Guojun.The theory of Σ-(α-tautologies)in revised kleens system[J]. Science in China: Series E Technological Sciences,1998, 28(2):146-152. [6] 王国俊,傅丽,宋建社.二值命题逻辑中命题的真度理论[J].中国科学:A辑 数学,2001, 31(11):998-1008. WANG Guojun, FU LI, SONG Jianshe. The theory of true degree in two-valued propositional logic[J]. Science in China: Series A Mathematics, 2001, 31(11):998-1008. [7] 王国俊.非经典数理逻辑与近似推理[M].2版.北京:科学出版社,2006. WANG Guojun. Non-classical mathematical logic and approximate reasoning[M]. 2nd. Beijing: Science Press, 2006. [8] 王国俊.数理逻辑引论与归结原理[M].2版.北京:科学出版社,2006. WANG Guojun. An introduction to mathematical logic and resolution principle[M]. 2nd. Beijing: Science Press, 2006. [9] 吴洪博.Gödel系统中的广义重言式理论[J].模糊系统与数学, 2000,14(4):53-59. WU Hongbo. Theory of generalized tautology in Gödel logic system[J]. Fuzzy Systems and Mathematics, 2000, 14(4):53-69. [10] 吴洪博. 基础R0代数与基础L*系统[J]. 数学进展, 2003, 32(5):565-576. WU Hongbo. Bassis R0-algebra and bassis L* system[J]. Adwances in Mathematics, 2003, 32(5):565-576. [11] WU Hongbo. Theory of generalized tautology in revised Kleen system[J]. Science in China: Series E, 2001, 44(3):233-238. [12] 李玲玲,吴洪博.BR0-分配性及其推广[J]. 山东大学学报(理学版), 2012, 47(2):93-97. LI Lingling, WU Hongbo. BR0-distributivity and its generalization[J]. Journal of Shandong University(Natural Science), 2012, 47(2):93-97. [13] 周建仁,吴洪博.WBR0-代数的正则性及与其他逻辑代数的关系[J]. 山东大学学报(理学版), 2012, 47(2):86-92. ZHOU Jianren, WU Hongbo. The regularness of WBR0-algebras and relationship with other logic algebras[J].Journal of Shandong University(Natural Science), 2012, 47(2):86-92. [14] 汪宁,吴洪博.SWBR0-代数的蕴涵理想及其诱导的商代数[J]. 吉林大学学报(理学版), 2013, 51(1):21-26. WANG Ning, WU Hongbo. Implication ideal with derived quotiend algebra of SWBR0-algebra[J]. Journal of Jilin University(Natural Science), 2013, 51(1):21-26. [15] 王国俊,段巧林. 模态逻辑中的(n)真度理论与和谐定理[J]. 中国科学:F辑 信息科学,2009,39(2):234-245. WANG Guojun, DUANG Qiaolin. Theory of(n)truth degree of formulas in modal logic and a consistency theorem[J]. Science in China: Series F Information Sciences, 2009, 39(2):234-245. [16] BLACKBURN P, RIJKE M, VENEMA Y. Modal Logic[M]. Cambridge: Cambridge University Press, 2001. |
[1] | 宋爽, 那日萨, 张杨. 基于在线评论的消费者品牌转换意向模糊推理[J]. 山东大学学报(理学版), 2014, 49(12): 7-11. |
[2] | 左卫兵. 模糊命题逻辑L*中公式的条件随机真度[J]. J4, 2012, 47(6): 121-126. |
[3] | 张乐,裴道武. 命题逻辑中理论的条件真度[J]. J4, 2012, 47(2): 82-85. |
[4] | 崔美华. 逻辑系统G3中命题的D-条件真度与近似推理[J]. J4, 2010, 45(11): 52-58. |
[5] | 邹尚田 王国俊. 模糊模态逻辑系统M?uk中的可达广义重言式[J]. J4, 2009, 44(8): 80-85. |
[6] | 段景瑶 王国俊. 关于K的三种模糊模态逻辑[J]. J4, 2008, 43(12): 31-39. |
[7] | 刘华文,,王国俊,张诚一 . 几种逻辑系统中的近似推理理论[J]. J4, 2007, 42(7): 77-81 . |
|