《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (11): 51-63.doi: 10.6040/j.issn.1671-9352.0.2023.504
Yaocheng QU1,2(),Xuejing YAO2,Yundong SUN1,*(
)
摘要:
探索氧化应激对一款半胱氨酸(cysteine,Cys)偶联型抗体偶联药物(antibody-drug conjugate,ADC)结构和功能的影响, 研究对象为一款基于Cys偶联的靶向c-Met的ADC(简称c-Met ADC)。首先,将研究样本置于不同比例H2O2溶液中孵育进行强制氧化。然后,采用多种分析技术对氧化样本的结构和功能变化进行深度表征。H2O2诱导的氧化应激造成c-Met ADC抗体骨架上的Met氧化和连接头中的硫醚键裂解。Met氧化进一步导致了c-Met ADC的热稳定性和新生儿受体(neonatal Fc receptor, FcRn)亲和力降低,且均主要与抗体可结晶片段(fragment crystallizable,Fc)上的Met257氧化有关;而硫醚键裂解则导致c-Met ADC的生物学活性降低。氧化应激是该ADC稳定性的关键影响因素,由其导致的Met257氧化以及硫醚键裂解均应作为其关键质量属性(critical quality attributes,CQAs)在日常放行和稳定性研究中严格监控。同时,还应避免将其暴露于氧化环境中或通过优化环境因素来减轻氧化应激对其结构和功能的影响。
中图分类号:
1 |
FU Z W , LI S J , HAN S F , et al. Antibody drug conjugate: the "biological missile" for targeted cancer therapy[J]. Signal Transduction and Targeted Therapy, 2022, 7, 93.
doi: 10.1038/s41392-022-00947-7 |
2 | TSUCHIKAMA K , AN Z Q . Antibody-drug conjugates: recent advances in conjugation and linker chemistries[J]. Protein & Cell, 2018, 9 (1): 33- 46. |
3 |
MCKERTISH C M , KAYSER V . Advances and limitations of antibody drug conjugates for cancer[J]. Biomedicines, 2021, 9 (8): 872.
doi: 10.3390/biomedicines9080872 |
4 |
CHAU C H , STEEG P S , FIGG W D . Antibody-drug conjugates for cancer[J]. Lancet, 2019, 394, 793- 804.
doi: 10.1016/S0140-6736(19)31774-X |
5 |
MAECKER H , JONNALAGADDA V , BHAKTA S , et al. Exploration of the antibody-drug conjugate clinical landscape[J]. mAbs, 2023, 15 (1): 2229101.
doi: 10.1080/19420862.2023.2229101 |
6 |
WANG Z J , LI H X , GOU L T , et al. Antibody-drug conjugates: recent advances in payloads[J]. Acta Pharmaceutica Sinica B, 2023, 13 (10): 4025- 4059.
doi: 10.1016/j.apsb.2023.06.015 |
7 |
NOWAK C , CHEUNG J K , DELLATORE S M , et al. Forced degradation of recombinant monoclonal antibodies: a practical guide[J]. mAbs, 2017, 9 (8): 1217- 1230.
doi: 10.1080/19420862.2017.1368602 |
8 | AGRAWAL N, CHENNAMSETTY N. Understanding, predicting, and mitigating the impact of post-translational physicochemical modifications, including aggregation, on the stability of biopharmaceutical drug products[M]//Developability of Biotherapeutics. Leiden: CRC Press, 2015: 61-84. |
9 |
LUO Q Z , CHUNG H H , BORTHS C , et al. Structural characterization of a monoclonal antibody-maytansinoid immunoconjugate[J]. Analytical Chemistry, 2016, 88 (1): 695- 702.
doi: 10.1021/acs.analchem.5b03709 |
10 |
BUECHELER J W , WINZER M , WEBER C , et al. Oxidation-induced destabilization of model antibody-drug conjugates[J]. Journal of Pharmaceutical Sciences, 2019, 108 (3): 1236- 1245.
doi: 10.1016/j.xphs.2018.10.039 |
11 |
CHEN Y , DOUD E , STONE T , et al. Rapid global characterization of immunoglobulin G1 following oxidative stress[J]. mAbs, 2019, 11 (6): 1089- 1100.
doi: 10.1080/19420862.2019.1625676 |
12 |
BOLL B , BESSA J , FOLZER E , et al. Extensive chemical modifications in the primary protein structure of IgG1 subvisible particles are necessary for breaking immune tolerance[J]. Molecular Pharmaceutics, 2017, 14 (4): 1292- 1299.
doi: 10.1021/acs.molpharmaceut.6b00816 |
13 |
LIU D J , REN D , HUANG H , et al. Structure and stability changes of human IgG1 Fc as a consequence of methionine oxidation[J]. Biochemistry, 2008, 47 (18): 5088- 5100.
doi: 10.1021/bi702238b |
14 |
LIU H C , GAZA-BULSECO G , XIANG T , et al. Structural effect of deglycosylation and methionine oxidation on a recombinant monoclonal antibody[J]. Molecular Immunology, 2008, 45 (3): 701- 708.
doi: 10.1016/j.molimm.2007.07.012 |
15 | BERTOLOTTI-CIARLET A , WANG W R , LOWNES R , et al. Impact of methionine oxidation on the binding of human IgG1 to Fc Rn and Fc gamma receptors[J]. Molecular Immunology, 2009, 46 (8/9): 1878- 1882. |
16 |
BURKITT W , DOMANN P , O'CONNOR G . Conformational changes in oxidatively stressed monoclonal antibodies studied by hydrogen exchange mass spectrometry[J]. Protein Science, 2010, 19 (4): 826- 835.
doi: 10.1002/pro.362 |
17 |
MO J J , YAN Q R , SO C K , et al. Understanding the impact of methionine oxidation on the biological functions of IgG1 antibodies using hydrogen/deuterium exchange mass spectrometry[J]. Analytical Chemistry, 2016, 88 (19): 9495- 9502.
doi: 10.1021/acs.analchem.6b01958 |
18 |
STRACKE J , EMRICH T , RUEGER P , et al. A novel approach to investigate the effect of methionine oxidation on pharmacokinetic properties of therapeutic antibodies[J]. mAbs, 2014, 6 (5): 1229- 1242.
doi: 10.4161/mabs.29601 |
19 |
GAO X , JI J A , VEERAVALLI K , et al. Effect of individual Fc methionine oxidation on FcRn binding: Met252 oxidation impairs FcRn binding more profoundly than Met428 oxidation[J]. Journal of Pharmaceutical Sciences, 2015, 104 (2): 368- 377.
doi: 10.1002/jps.24136 |
20 |
FISHKIN N , MALONEY E K , CHARI R V J , et al. A novel pathway for maytansinoid release from thioether linked antibody-drug conjugates (ADCs) under oxidative conditions[J]. Chemical Communications, 2011, 47 (38): 10752- 10754.
doi: 10.1039/c1cc14164c |
21 |
ZHU Y W , LIU K , WANG K L , et al. Treatment-related adverse events of antibody-drug conjugates in clinical trials: a systematic review and meta-analysis[J]. Cancer, 2023, 129 (2): 283- 295.
doi: 10.1002/cncr.34507 |
22 |
GLOVER Z K , WECKSLER A , ARYAL B , et al. Physicochemical and biological impact of metal-catalyzed oxidation of IgG1 monoclonal antibodies and antibody-drug conjugates via reactive oxygen species[J]. mAbs, 2022, 14 (1): 2122957.
doi: 10.1080/19420862.2022.2122957 |
23 |
YAN B X , YATES Z , BALLAND A , et al. Human IgG1 hinge fragmentation as the result of H2O2-mediated radical cleavage[J]. The Journal of Biological Chemistry, 2009, 284 (51): 35390- 35402.
doi: 10.1074/jbc.M109.064147 |
24 |
AKBARIAN M , CHEN S H . Instability challenges and stabilization strategies of pharmaceutical proteins[J]. Pharmaceutics, 2022, 14 (11): 2533.
doi: 10.3390/pharmaceutics14112533 |
25 |
EISNER D R , HUI A D , EPPLER K , et al. Stability evaluation of hydrogen peroxide uptake samples from monoclonal antibody drug product aseptically filled in vapor phase hydrogen peroxide-sanitized barrier systems: a case study[J]. PDA Journal of Pharmaceutical Science and Technology, 2019, 73 (3): 285- 291.
doi: 10.5731/pdajpst.2018.009340 |
26 |
YOU J W , ZHANG J , WANG J , et al. Cysteine-based coupling: challenges and solutions[J]. Bioconjugate Chemistry, 2021, 32 (8): 1525- 1534.
doi: 10.1021/acs.bioconjchem.1c00213 |
27 |
DATTA-MANNAN A , CHOI H , STOKELL D , et al. The properties of cysteine-conjugated antibody-drug conjugates are impacted by the IgG subclass[J]. The AAPS Journal, 2018, 20 (6): 103.
doi: 10.1208/s12248-018-0263-0 |
28 | PATEL J , KOTHARI R , TUNGA R , et al. Stability considerations for biopharmaceutical of part 1: overview of protein and peptide degradation pathways[J]. BioProcess International, 2011, 9 (1): 20- 24. |
29 |
LI S , SCHÖNEICH C , BORCHARDT R T . Chemical instability of protein pharmaceuticals: mechanisms of oxidation and strategies for stabilization[J]. Biotechnology and Bioengineering, 1995, 48 (5): 490- 500.
doi: 10.1002/bit.260480511 |
[1] | 李秀娥1,高素莲2,张秋3*. 功能化多壁碳纳米管对NHFB细胞的毒性研究[J]. J4, 2010, 45(5): 6-11. |
|