《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (10): 74-88.doi: 10.6040/j.issn.1671-9352.0.2023.547
• • 上一篇
赵玉凤1,刘桂荣2
ZHAO Yufeng1, LIU Guirong2
摘要: 建立一类具有捕食者阶段结构和比率依赖的Holling III型功能反应的随机捕食者-食饵模型。首先, 给出了随机模型全局正解的存在唯一性。其次, 通过构造合适的Lyapunov函数, 利用Has'Minskii的遍历性理论研究了模型的遍历平稳分布的存在唯一性。然后, 通过求解相应的三维Fokker-Planck方程的方法, 推导出随机捕食模型在正平衡点附近的概率密度函数的精确表达式。最后, 通过数值仿真验证了理论结果的合理性。
中图分类号:
[1] 周翔宇,吴建华. 一类带Michaelis-Menten收获项的Holling-Ⅳ型捕食-食饵模型的定性分析[J]. 应用数学学报,2019,42(1):32-42. ZHOU Xiangyu, WU Jianhua. The qualitative analysis of a Holling-IV type predator-prey model with Michaelis-Menten type prey harvesting[J]. Acta Mathematicae Applicatae Sinica, 2019, 42(1):32-42. [2] 蒋婷婷,杜增吉. 带有脉冲和Holling-Ⅳ型功能反应函数的中立型捕食-食饵模型的周期解[J]. 数学物理学报,2021,41(1):178-193. JIANG Tingting, DU Zengji. Periodic solutions of a neutral impulsive predator-prey model with Holling-type IV functional response[J]. Acta Mathematica Scientia, 2021, 41(1):178-193. [3] 霍林杰,张存华. 具有Holling-Ⅲ型功能反应的捕食扩散系统的稳定性和Hopf分支[J]. 山东大学学报(理学版),2023,58(1):16-24. HUO Linjie, ZHANG Cunhua. Stability and hopf bifurcation of diffusive predator-prey system with Holling-Ⅲ type functional response[J]. Journal of Shandong University(Natural Science), 2023, 58(1):16-24. [4] 王长有,李楠,蒋涛,等. 一类具有时滞及反馈控制的非自治非线性比率依赖食物链模型[J]. 数学物理学报,2022,42(1):245-268. WANG Changyou, LI Nan, JIANG Tao, et al. On a nonlinear non-autonomous ratio-dependent food chain model with delays and feedback controls[J]. Acta Mathematica Scientia, 2022, 42(1):245-268. [5] FU Jing, JIANG Daqing, SHI Ningzhong. Qualitative analysis of a stochastic ratio-dependent Holling-Tanner system[J]. Acta Mathematica Scientia, 2018, 38B(2):429-440. [6] CHEN Mengxin, WU Ranchao, LIU Biao, et al. Spatiotemporal dynamics in a ratio-dependent predator-prey model with time delay near the Turing-Hopf bifurcation point[J]. Communications in Nonlinear Science and Numerical Simulation, 2019, 77:141-167. [7] GAO Xiaoyan, ISHAG Sadia, FU Shengmao, et al. Bifurcation and Turing pattern formation in a diffusive ratio-dependent predator-prey model with predator harvesting[J]. Nonlinear Analysis: Real World Applications, 2020, 51:102962. [8] ROY Jyotirmoy, BARMAN Dipesh, ALAM Shariful. Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment[J]. Biosystems, 2020, 197:104176. [9] LI Wenjie, JI Jinchen, HUANG Lihong. Global dynamic behavior of a predator-prey model under ratio-dependent state impulsive control[J]. Applied Mathematical Modelling, 2020, 77(2):1842-1859. [10] 李艳玲,李瑜,郭改慧. 一类混合比率依赖食物链扩散模型的Hopf分支[J]. 应用数学学报,2019,42(1):1-14. LI Yanling, LI Yu, GUO Gaihui. Hopf bifurcation for a class of hybrid ratio-dependent food chain model with diffusion[J]. Acta Mathematicae Applicatae Sinica, 2019, 42(1):1-14. [11] 李波,梁子维. 一类具有Beddington-DeAngelis响应函数的阶段结构捕食模型的稳定性[J]. 数学物理学报,2022,42(6):1826-1835. LI Bo, LIANG Ziwei. Stability of stage-structured predator-prey models with Beddington-DeAngelis functional response[J]. Acta Mathematica Scientia, 2022, 42(6):1826-1835. [12] 张明扬. 两种具有Allee效应和阶段结构的捕食模型及最优捕获[D]. 武汉:华中科技大学,2021. ZHANG Mingyang. Two predation models with Allee effect and stage structure and optimal capture[D]. Wuhan: Huazhong University of Science & Technology, 2021. [13] 许洪菲. 带有阶段结构的交叉扩散捕食-食饵模型的动力学分析[D]. 哈尔滨:哈尔滨师范大学, 2022. XU Hongfei. Dynamics analysis in a cross-diffusion predators-prey model with stage structure[D]. Harbin: Harbin Normal University, 2022. [14] 张钰珂,孟新柱. 具有恐惧效应和Crowley-Martin功能反应的随机捕食模型的动力学[J]. 山东大学学报(理学版),2023,58(10):54-66. ZHANG Yuke, MENG Xinzhu. Dynamies of a stochastic predation model with fear effect and Crowley-Martin functional response[J]. Journal of Shandong University(Natural Science), 2023, 58(10):54-66. [15] HAN Bingtao, JIANG Daqing, ZHOU Baoquan, et al. Stationary distribution and probability density function of a stochastic SIRSI epidemic model with saturation incidence rate and logistic growth[J]. Chaos, Solitons and Fractals, 2020, 142(5):110519. [16] ZHAO Xin, ZENG Zhijun. Stationary distribution and extinction of a stochastic ratio-dependent predator-prey system with stage structure for the predator[J]. Physica A: Statistical Mechanics and its Applications, 2020, 545:123310. [17] ZHANG Xinhong, YANG Qing, JIANG Daqing. A stochastic predator-prey model with Ornstein-Uhlenbeck process: characterization of stationary distribution, extinction and probability density function[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 122:107259. [18] ZHOU Baoquan, JIANG Daqing, DAI Yucong, et al. Stationary distribution and probability density function of a stochastic SVIS epidemic model with standard incidence and vaccination strategies[J]. Chaos, Solitons and Fractals, 2021, 143:110601. [19] KHASMINSKII Rafail. Stochastic stability of differential equations[M]. Beilin: Springer, 1980. [20] GARDINER C W. Handbook of stochastic methods for physics, chemistry and the natural sciences[M]. Berlin: Springer, 1983. [21] ROOZEN H. An asymptotic solution to a two-dimensional exit problem arising in population dynamics[J]. SIAM Journal on Applied Mathematics, 1989, 49(6):793-1810. [22] HAN Bingtao, JIANG Daqing. Threshold dynamics and probability density functions of a stochastic predator-prey model with general distributed delay[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 128:107596. [23] DESMOND J H. An algorithmic introduction to numerical simulation of stochastic differential equations[J]. SIAM Review, 2001, 43(3):525-546. |
[1] | 丁佳鑫,郭永峰,米丽娜. 高斯噪声和Lévy噪声激励下欠阻尼周期势系统的相变行为[J]. 《山东大学学报(理学版)》, 2023, 58(8): 111-117. |
[2] | 张钰珂,孟新柱. 具有恐惧效应和Crowley-Martin功能反应的随机捕食模型的动力学[J]. 《山东大学学报(理学版)》, 2023, 58(10): 54-66. |
[3] | 程惠东,常正波. 脉冲存放食饵连续捕获捕食者阶段结构数学模型[J]. J4, 2010, 45(11): 83-87. |
[4] | 侯强,靳祯. 基于比率且包含食饵避难的HollingTanner模型分析[J]. J4, 2009, 44(3): 56-60 . |
|