《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (10): 54-66.doi: 10.6040/j.issn.1671-9352.0.2022.635
摘要:
研究具有恐惧效应和Crowley-Martin功能反应的随机捕食者-食饵模型。证明随机模型的全局正解的存在唯一性和解的有界性, 利用随机定性分析的方法研究种群平均持久和灭绝的充分条件。通过巧妙地构建合适的李雅普诺夫函数, 分类研究系统的遍历平稳分布的存在唯一性。最后, 数值模拟验证恐惧效应和白噪声对种群动力学理论结果的影响。
中图分类号:
1 | LOTKA A J . Elements of physical biology[M]. Baltimore: Williams & Wilkins Company, 1925: 460. |
2 |
VOLTERRA V . Fluctuations in the abundance of a species considered mathematically[J]. Nature, 1926, 118 (2972): 558- 560.
doi: 10.1038/118558a0 |
3 |
HOLLING C S . Some characteristics of simple types of predation and parasitism[J]. The Canadian Entomologist, 1959, 91 (7): 385- 398.
doi: 10.4039/Ent91385-7 |
4 |
AGIZA H N , ELABBASY E M , EL-METWALLY H , et al. Chaotic dynamics of a discrete prey-predator model with Holling type Ⅱ[J]. Nonlinear Analysis: Real World Applications, 2009, 10 (1): 116- 129.
doi: 10.1016/j.nonrwa.2007.08.029 |
5 |
HUANG Yunjin , CHEN Fengde , ZHONG Li . Stability analysis of a prey-predator model with Holling type Ⅲ response function incorporating a prey refuge[J]. Applied Mathematics and Computation, 2006, 182 (1): 672- 683.
doi: 10.1016/j.amc.2006.04.030 |
6 | LIU Xianqing , ZHONG Shouming , TIAN Baodan , et al. Asymptotic properties of a stochastic predator-prey model with Crowley-Martin functional response[J]. Journal of Applied Mathematics and Computing, 2013, 43 (1): 479- 490. |
7 |
LU Chun . Dynamical analysis and numerical simulations on a Crowley-Martin predator-prey model in stochastic environment[J]. Applied Mathematics and Computation, 2022, 413, 126641.
doi: 10.1016/j.amc.2021.126641 |
8 |
BEDDINGTON J R . Mutual interference between parasites or predators and its effect on searching efficiency[J]. The Journal of Animal Ecology, 1975, 44, 331.
doi: 10.2307/3866 |
9 |
DEANGELIS D L , GOLDSTEIN R A , O'NEILL R V . A model for tropic interaction[J]. Ecology, 1975, 56 (4): 881- 892.
doi: 10.2307/1936298 |
10 |
LESLIE P H , GOWER J C . The properties of a stochastic model for the predator-prey type of interaction between two species[J]. Biometrika, 1960, 47 (3/4): 219- 234.
doi: 10.2307/2333294 |
11 |
ZANETTE L Y , WHITE A F , ALLEN M C , et al. Perceived predation risk reduces the number of offspring songbirds produce per year[J]. Science, 2011, 334 (6061): 1398- 1401.
doi: 10.1126/science.1210908 |
12 |
CREEL S , CHRISTIANSON D , LILEY S , et al. Predation risk affects reproductive physiology and demography of elk[J]. Science, 2007, 315 (5814): 960.
doi: 10.1126/science.1135918 |
13 | CREEL S , CHRISTIANSON D . Relationships between direct predation and risk effects[J]. Trends in Ecology & Evolution, 2008, 23 (4): 194- 201. |
14 |
HUA F Y , SIEVING K E , FLETCHER R J , et al. Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance[J]. Behavioral Ecology, 2014, 25 (3): 509- 519.
doi: 10.1093/beheco/aru017 |
15 |
CAI Yongmei , CAI Siyang , MAO Xuerong . Stochastic delay foraging arena predator-prey system with Markov switching[J]. Stochastic Analysis and Applications, 2020, 38 (2): 191- 212.
doi: 10.1080/07362994.2019.1679645 |
16 |
LIU Qun , JIANG Daqing . Influence of the fear factor on the dynamics of a stochastic predator-prey model[J]. Applied Mathematics Letters, 2021, 112, 106756.
doi: 10.1016/j.aml.2020.106756 |
17 |
ROY J , BARMAN D , ALAM S . Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment[J]. Biosystems, 2020, 197, 104176.
doi: 10.1016/j.biosystems.2020.104176 |
18 |
QI H K , MENG X Z , HAYAT T , et al. Stationary distribution of a stochastic predator-prey model with hunting cooperation[J]. Applied Mathematics Letters, 2022, 124, 107662.
doi: 10.1016/j.aml.2021.107662 |
19 |
QI Haokun , MENG Xinzhu . Threshold behavior of a stochastic predator-prey system with prey refuge and fear effect[J]. Applied Mathematics Letters, 2021, 113, 106846.
doi: 10.1016/j.aml.2020.106846 |
20 | LIU Guodong , QI Haokun , CHANG Zhengbo , et al. Asymptotic stability of a stochastic May mutualism system[J]. Computers & Mathematics with Applications, 2020, 79 (3): 735- 745. |
21 | PENG Hao , ZHANG Xinhong . The dynamics of stochastic predator-prey models with non-constant mortality rate and general nonlinear functional response[J]. Journal of Nonlinear Modeling and Analysis, 2020, 2, 495- 511. |
22 | WEI Ning , LI Mei . Stochastically permanent analysis of a non-autonomous HollingⅡ predator-prey model with a complex type of noises[J]. Journal of Applied Analysis & Computation, 2022, 12 (2): 479- 496. |
23 |
CAO Boqiang , SHAN Meijing , ZHANG Qimin , et al. A stochastic SIS epidemic model with vaccination[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 486, 127- 143.
doi: 10.1016/j.physa.2017.05.083 |
24 |
ZHANG Shengqiang , YUAN Sanling , ZHANG Tonghua . A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments[J]. Applied Mathematics and Computation, 2022, 413, 126598.
doi: 10.1016/j.amc.2021.126598 |
25 |
CHENG S R . Stochastic population systems[J]. Stochastic Analysis and Applications, 2009, 27 (4): 854- 874.
doi: 10.1080/07362990902844348 |
26 |
ROY J , ALAM S . Fear factor in a prey-predator system in deterministic and stochastic environment[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 541, 123359.
doi: 10.1016/j.physa.2019.123359 |
27 | KHASMINSKII R . Stochastic stability of differential equations[M]. 2nd ed. Michigan: Springer Science & Business Media, 2011. |
[1] | 曹倩,李艳玲,单炜华. 含有猎物避难所和恐惧效应的反应扩散捕食者-食饵模型的动力学[J]. 《山东大学学报(理学版)》, 2023, 58(10): 43-53. |
[2] | 郭改慧,王晶晶,李旺瑞. 一类具有时滞的植被-水反应扩散模型的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(10): 32-42, 53. |
[3] | 王雅迪,袁海龙. 时滞Lengyel-Epstein反应扩散系统的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(8): 92-103. |
[4] | 倪云,刘锡平. 适型分数阶耦合系统正解的存在性和Ulam稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(8): 82-91. |
[5] | 贺子鹏,董亚莹. 一类异质环境下Holling Ⅱ型竞争模型的稳态解[J]. 《山东大学学报(理学版)》, 2023, 58(8): 73-81. |
[6] | 蔡中博,赵继红. 一类趋化流体模型大解的整体存在性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 84-91. |
[7] | 孙盼,张旭萍. 具有无穷时滞脉冲发展方程解的连续依赖性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 77-83, 91. |
[8] | 康聪聪. 一类二阶周期边值问题正解的存在性与多解性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 68-76. |
[9] | 李莉,杨和. 二阶脉冲发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 57-67. |
[10] | 郭艳敏,赵崧,佟玉霞. 一类非一致椭圆方程障碍问题的全局BMO估计[J]. 《山东大学学报(理学版)》, 2023, 58(6): 46-56. |
[11] | 韩青秀,刘红霞,伍芸. BKK方程的分支现象与非线性波解[J]. 《山东大学学报(理学版)》, 2022, 57(8): 88-94. |
[12] | 李春平,桑彦彬. 具有变号权函数的分数阶p-q-Laplacian方程组的多重解[J]. 《山东大学学报(理学版)》, 2022, 57(8): 95-102. |
[13] | 庞玉婷,赵东霞,鲍芳霞. 具有多时滞和多参数的双向环状网络的稳定性[J]. 《山东大学学报(理学版)》, 2022, 57(8): 103-110. |
[14] | 苏肖肖, 张亚莉. 带阻尼项的二阶差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 56-63. |
[15] | 武若飞. 奇异四阶m-点边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 75-83. |
|