您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2023, Vol. 58 ›› Issue (10): 54-66.doi: 10.6040/j.issn.1671-9352.0.2022.635

•   • 上一篇    下一篇

具有恐惧效应和Crowley-Martin功能反应的随机捕食模型的动力学

张钰珂(),孟新柱*()   

  1. 山东科技大学数学与系统科学学院, 山东 青岛 266590
  • 收稿日期:2022-11-27 出版日期:2023-10-20 发布日期:2023-10-17
  • 通讯作者: 孟新柱 E-mail:zhangyukekkk@163.com;mxz721106@sdust.edu.cn
  • 作者简介:张钰珂(1998—),女,硕士研究生,研究方向为种群动力学. E-mail: zhangyukekkk@163.com
  • 基金资助:
    国家自然科学基金资助项目(12271308);山东省自然科学基金资助项目(ZR2019MA003);山东省泰山学者计划资助项目

Dynamics of a stochastic predation model with fear effect and Crowley-Martin functional response

Yuke ZHANG(),Xinzhu MENG*()   

  1. College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
  • Received:2022-11-27 Online:2023-10-20 Published:2023-10-17
  • Contact: Xinzhu MENG E-mail:zhangyukekkk@163.com;mxz721106@sdust.edu.cn

摘要:

研究具有恐惧效应和Crowley-Martin功能反应的随机捕食者-食饵模型。证明随机模型的全局正解的存在唯一性和解的有界性, 利用随机定性分析的方法研究种群平均持久和灭绝的充分条件。通过巧妙地构建合适的李雅普诺夫函数, 分类研究系统的遍历平稳分布的存在唯一性。最后, 数值模拟验证恐惧效应和白噪声对种群动力学理论结果的影响。

关键词: Crowley-Martin功能反应, 全局正解, 随机定性分析, 遍历平稳分布

Abstract:

A stochastic predator-prey model with fear effect and Crowley-Martin functional response is studied. We first give the existence and uniqueness of global positive solutions and the boundedness of solutions on the stochastic model. We explore sufficient conditions for the persistence in mean and the extinction of the populations by using stochastic qualitative analysis theory. The existence of unique ergodic stationary distribution is proved by establishing suitable Lyapunov functions. Finally, numerical simulations are conducted to reveal the effects of fear and white noise on the theoretical results of population dynamics.

Key words: Crowley-Martin functional response, global positive solution, stochastic qualitative analysis, ergodic stationary distribution

中图分类号: 

  • O175

表1

各参数的生物学意义"

参数 含义
r 内禀增长率
f 由捕食者引起的恐惧程度
δ 食饵的密度制约系数
β 捕食率
q 能量转换率
d 捕食者的死亡率
h 捕食者的密度制约系数

表2

模型(2) 的参数取值"

参数 r f β δ q d h a b
取值 1.5 0.2 0.5 0.01 0.9 0.042 0.2 2 2

图1

σ1=1.9, σ2=1.2时, 模型(2)的时间序列图"

图2

σ1=0.1, σ2=0.1时模型(2)的持久性"

图3

模型(2)中x(t)和y(t)的概率密度函数图"

图4

f为0、0.2、0.8时模型(2)的时间序列图"

图5

f=0.8, σ1=0.8, σ2=0.8时, 模型(2)的时间序列图"

1 LOTKA A J . Elements of physical biology[M]. Baltimore: Williams & Wilkins Company, 1925: 460.
2 VOLTERRA V . Fluctuations in the abundance of a species considered mathematically[J]. Nature, 1926, 118 (2972): 558- 560.
doi: 10.1038/118558a0
3 HOLLING C S . Some characteristics of simple types of predation and parasitism[J]. The Canadian Entomologist, 1959, 91 (7): 385- 398.
doi: 10.4039/Ent91385-7
4 AGIZA H N , ELABBASY E M , EL-METWALLY H , et al. Chaotic dynamics of a discrete prey-predator model with Holling type Ⅱ[J]. Nonlinear Analysis: Real World Applications, 2009, 10 (1): 116- 129.
doi: 10.1016/j.nonrwa.2007.08.029
5 HUANG Yunjin , CHEN Fengde , ZHONG Li . Stability analysis of a prey-predator model with Holling type Ⅲ response function incorporating a prey refuge[J]. Applied Mathematics and Computation, 2006, 182 (1): 672- 683.
doi: 10.1016/j.amc.2006.04.030
6 LIU Xianqing , ZHONG Shouming , TIAN Baodan , et al. Asymptotic properties of a stochastic predator-prey model with Crowley-Martin functional response[J]. Journal of Applied Mathematics and Computing, 2013, 43 (1): 479- 490.
7 LU Chun . Dynamical analysis and numerical simulations on a Crowley-Martin predator-prey model in stochastic environment[J]. Applied Mathematics and Computation, 2022, 413, 126641.
doi: 10.1016/j.amc.2021.126641
8 BEDDINGTON J R . Mutual interference between parasites or predators and its effect on searching efficiency[J]. The Journal of Animal Ecology, 1975, 44, 331.
doi: 10.2307/3866
9 DEANGELIS D L , GOLDSTEIN R A , O'NEILL R V . A model for tropic interaction[J]. Ecology, 1975, 56 (4): 881- 892.
doi: 10.2307/1936298
10 LESLIE P H , GOWER J C . The properties of a stochastic model for the predator-prey type of interaction between two species[J]. Biometrika, 1960, 47 (3/4): 219- 234.
doi: 10.2307/2333294
11 ZANETTE L Y , WHITE A F , ALLEN M C , et al. Perceived predation risk reduces the number of offspring songbirds produce per year[J]. Science, 2011, 334 (6061): 1398- 1401.
doi: 10.1126/science.1210908
12 CREEL S , CHRISTIANSON D , LILEY S , et al. Predation risk affects reproductive physiology and demography of elk[J]. Science, 2007, 315 (5814): 960.
doi: 10.1126/science.1135918
13 CREEL S , CHRISTIANSON D . Relationships between direct predation and risk effects[J]. Trends in Ecology & Evolution, 2008, 23 (4): 194- 201.
14 HUA F Y , SIEVING K E , FLETCHER R J , et al. Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance[J]. Behavioral Ecology, 2014, 25 (3): 509- 519.
doi: 10.1093/beheco/aru017
15 CAI Yongmei , CAI Siyang , MAO Xuerong . Stochastic delay foraging arena predator-prey system with Markov switching[J]. Stochastic Analysis and Applications, 2020, 38 (2): 191- 212.
doi: 10.1080/07362994.2019.1679645
16 LIU Qun , JIANG Daqing . Influence of the fear factor on the dynamics of a stochastic predator-prey model[J]. Applied Mathematics Letters, 2021, 112, 106756.
doi: 10.1016/j.aml.2020.106756
17 ROY J , BARMAN D , ALAM S . Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment[J]. Biosystems, 2020, 197, 104176.
doi: 10.1016/j.biosystems.2020.104176
18 QI H K , MENG X Z , HAYAT T , et al. Stationary distribution of a stochastic predator-prey model with hunting cooperation[J]. Applied Mathematics Letters, 2022, 124, 107662.
doi: 10.1016/j.aml.2021.107662
19 QI Haokun , MENG Xinzhu . Threshold behavior of a stochastic predator-prey system with prey refuge and fear effect[J]. Applied Mathematics Letters, 2021, 113, 106846.
doi: 10.1016/j.aml.2020.106846
20 LIU Guodong , QI Haokun , CHANG Zhengbo , et al. Asymptotic stability of a stochastic May mutualism system[J]. Computers & Mathematics with Applications, 2020, 79 (3): 735- 745.
21 PENG Hao , ZHANG Xinhong . The dynamics of stochastic predator-prey models with non-constant mortality rate and general nonlinear functional response[J]. Journal of Nonlinear Modeling and Analysis, 2020, 2, 495- 511.
22 WEI Ning , LI Mei . Stochastically permanent analysis of a non-autonomous HollingⅡ predator-prey model with a complex type of noises[J]. Journal of Applied Analysis & Computation, 2022, 12 (2): 479- 496.
23 CAO Boqiang , SHAN Meijing , ZHANG Qimin , et al. A stochastic SIS epidemic model with vaccination[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 486, 127- 143.
doi: 10.1016/j.physa.2017.05.083
24 ZHANG Shengqiang , YUAN Sanling , ZHANG Tonghua . A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments[J]. Applied Mathematics and Computation, 2022, 413, 126598.
doi: 10.1016/j.amc.2021.126598
25 CHENG S R . Stochastic population systems[J]. Stochastic Analysis and Applications, 2009, 27 (4): 854- 874.
doi: 10.1080/07362990902844348
26 ROY J , ALAM S . Fear factor in a prey-predator system in deterministic and stochastic environment[J]. Physica A: Statistical Mechanics and Its Applications, 2020, 541, 123359.
doi: 10.1016/j.physa.2019.123359
27 KHASMINSKII R . Stochastic stability of differential equations[M]. 2nd ed. Michigan: Springer Science & Business Media, 2011.
[1] 曹倩,李艳玲,单炜华. 含有猎物避难所和恐惧效应的反应扩散捕食者-食饵模型的动力学[J]. 《山东大学学报(理学版)》, 2023, 58(10): 43-53.
[2] 郭改慧,王晶晶,李旺瑞. 一类具有时滞的植被-水反应扩散模型的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(10): 32-42, 53.
[3] 王雅迪,袁海龙. 时滞Lengyel-Epstein反应扩散系统的Hopf分支[J]. 《山东大学学报(理学版)》, 2023, 58(8): 92-103.
[4] 倪云,刘锡平. 适型分数阶耦合系统正解的存在性和Ulam稳定性[J]. 《山东大学学报(理学版)》, 2023, 58(8): 82-91.
[5] 贺子鹏,董亚莹. 一类异质环境下Holling Ⅱ型竞争模型的稳态解[J]. 《山东大学学报(理学版)》, 2023, 58(8): 73-81.
[6] 蔡中博,赵继红. 一类趋化流体模型大解的整体存在性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 84-91.
[7] 孙盼,张旭萍. 具有无穷时滞脉冲发展方程解的连续依赖性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 77-83, 91.
[8] 康聪聪. 一类二阶周期边值问题正解的存在性与多解性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 68-76.
[9] 李莉,杨和. 二阶脉冲发展方程非局部问题mild解的存在性[J]. 《山东大学学报(理学版)》, 2023, 58(6): 57-67.
[10] 郭艳敏,赵崧,佟玉霞. 一类非一致椭圆方程障碍问题的全局BMO估计[J]. 《山东大学学报(理学版)》, 2023, 58(6): 46-56.
[11] 韩青秀,刘红霞,伍芸. BKK方程的分支现象与非线性波解[J]. 《山东大学学报(理学版)》, 2022, 57(8): 88-94.
[12] 李春平,桑彦彬. 具有变号权函数的分数阶p-q-Laplacian方程组的多重解[J]. 《山东大学学报(理学版)》, 2022, 57(8): 95-102.
[13] 庞玉婷,赵东霞,鲍芳霞. 具有多时滞和多参数的双向环状网络的稳定性[J]. 《山东大学学报(理学版)》, 2022, 57(8): 103-110.
[14] 苏肖肖, 张亚莉. 带阻尼项的二阶差分方程周期边值问题正解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 56-63.
[15] 武若飞. 奇异四阶m-点边值问题解的存在性[J]. 《山东大学学报(理学版)》, 2021, 56(2): 75-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[2] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[3] 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20 -22 .
[4] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[5] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[6] 李敏1,2,李歧强1. 不确定奇异时滞系统的观测器型滑模控制器[J]. 山东大学学报(理学版), 2014, 49(03): 37 -42 .
[7] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[8] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .
[9] 张京友,张培爱,钟海萍. 进化图论在知识型企业组织结构设计中的应用[J]. J4, 2013, 48(1): 107 -110 .
[10] 唐风琴1,白建明2. 一类带有广义负上限相依索赔额的风险过程大偏差[J]. J4, 2013, 48(1): 100 -106 .