您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (8): 103-110.doi: 10.6040/j.issn.1671-9352.0.2021.618

• • 上一篇    

具有多时滞和多参数的双向环状网络的稳定性

庞玉婷,赵东霞*,鲍芳霞   

  1. 中北大学理学院, 山西 太原 030051
  • 出版日期:2022-08-20 发布日期:2022-06-29
  • 作者简介:庞玉婷(1997— ), 女, 硕士研究生, 研究方向为微分方程稳定性理论. E-mail:2116786325@qq.com*通信作者简介:赵东霞(1981— ), 女, 博士, 副教授, 硕士生导师, 研究方向为微分方程稳定性理论. E-mail:zhaodongxia6@sina.com
  • 基金资助:
    山西省基础研究计划资助项目(20210302123046)

Stability of the bidirectional ring networks with multiple time delays and multiple parameters

PANG Yu-ting, ZHAO Dong-xia*, BAO Fang-xia   

  1. School of Science, North University of China, Taiyuan 030051, Shanxi, China
  • Online:2022-08-20 Published:2022-06-29

摘要: 针对具有多时滞和多参数的四元双向环形神经网络系统进行动力学分析,首先在平凡解附近对系统进行线性化处理,得到系统的特征方程。然后对特征方程进行因式分解,将其分解为四个一阶指数型多项式的连乘。进而,利用指数型多项式零点分布性质,建立系统与时滞相关及与时滞无关的稳定性充分条件。此外,将所得结论与已有文献中的结果做了详尽的对比分析,并利用数值模拟佐证了理论分析的有效性和优越性。

关键词: 双向环形神经网络, 多时滞, 指数型多项式, 稳定性

Abstract: The dynamic analysis of the four-neuron ring neural network with multiple time delays and multiple parameters is carried out. Firstly, the system is linearized near the trivial solution, and the characteristic equation of the system is obtained. Then the characteristic equation is factorized into four first-order exponential polynomials. Furthermore, by using the zero-point distribution property of exponential polynomial, sufficient conditions for the delay-dependent and delay-independent stability are established. Moreover, an exhaustive comparison analysis is made between the results obtained and those in the existing literature. Finally, some numerical simulations are presented to show the effectiveness and superiority of the results.

Key words: bidirectional ring neural network, multiple time delays, exponential polynomial, stability

中图分类号: 

  • O175.13
[1] CAMPBELL S A, RUAN S G, WEI J J. Qualitative analysis of a neural network model with multiple time delays[J]. International Journal of Bifurcation and Chaos, 1999, 9(8):1585-1595.
[2] XU Xu. Complicated dynamics of a ring neural network with time delays[J]. Journal of Physics A: Mathematical and Theoretical, 2008, 41(3):035102.
[3] HU Haijun, HUANG Lihong. Stability and Hopf bifurcation analysis on a ring of four neurons with delays[J]. Applied Mathematics and Computation, 2009, 213(2):587-599.
[4] 孙健, 陈杰, 刘国平. 时滞系统稳定性分析与应用[M]. 北京: 科学出版社, 2012. SUN Jian, CHEN Jie, LIU Guoping. Stability analysis and application of time-delay systems[M]. Beijing: Science Press, 2012.
[5] SONG Y D, LEWIS F L, POLYCARPOU M, et al. Guest editorial special issue on new developments in neural network structures for signal processing, autonomous decision, and adaptive control[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3):494-499.
[6] 邹劭芬, 王耀南, 黄立宏, 等. N元环状神经网络的稳定性[J]. 湖南大学学报(自然科学版), 2009, 36(10):45-49. ZOU Shaofen, WANG Yaonan, HUANG Lihong, et al. N-unit neural networks with delays[J]. Journal of Hunan University(Natural Sciences), 2009, 36(10):45-49.
[7] YUAN Shaoliang, LI Xuemei. Stablity and bifurcation for a class of tri-neuron networks with bidirectionally delayed connections and self-feedback[J]. International Journal of Bifurcation and Chaos, 2011, 21(6):1601-1616.
[8] 王婷婷. 环状神经网络系统的稳定性分析[D]. 太原: 中北大学, 2021: 16-21. WANG Tingting. Stability analysis of a ring neural network system[D]. Taiyuan: North University of China, 2021: 16-21.
[9] 王婷婷, 赵东霞, 毛莉, 等. 自反馈项对时滞神经网络系统稳定性的影响[J]. 华中师范大学学报(自然科学版), 2021, 55(2):165-170. WANG Tingting, ZHAO Dongxia, MAO Li, et al. The influence of self feedback term on the stability of neural network system with time delay[J]. Journal of Central China Normal University(Natural Sciences), 2021, 55(2):165-170.
[10] XU Changjin, TANG Xianhua, LIAO Maoxin. Stability and bifurcation analysis on a ring of five neurons with discrete delays[J]. Journal of Dynamic and Control Systems, 2013, 19(2):237-275.
[11] XIAO Min, ZHENG Weixing, CAO Jinde. Hopf bifurcation of an(n+1)-neuron bidirectional associative memory neural network model with delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(1):118-132.
[12] KHOKHLOVA T, KIPNIS M. Numerical and qualitative stability analysis of ring and linear neural networks with a large number of neurons[J]. International Journal of Pure and Applied Mathematics, 2012, 76(3):403-419.
[13] MAO Xiaochen, HU Haiyan. Hopf bifurcation analysis of a four-neuron network with multiple time delays[J]. Nonlinear Dynamics, 2009, 55(1/2):95-112.
[14] DESOER C A. The optimum formula for the gain of a flow graph or a simple derivation of Coates formula[J]. Proceedings of the IRE, 1960, 48(5):883-889.
[15] TAO Binbin, XIAO Min, ZHENG Weixing, et al. Dynamics analysis and design for a bidirectional super-ring-shaped neural network with n neurons and multiple delays[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(7):2978-2992.
[16] CAI Tiaoyang, ZHANG Huaguang, YANG Feisheng. Simplified frequency method for stability and bifurcation of delayed neural networks in ring structure[J]. Neurocomputing, 2013, 121:416-422.
[17] XING Ruitao, XIAO Min, ZHANG Yuezhong, et al. Stability and Hopf bifurcation analysis of an(n+m)-neuron double-ring neural network model with multiple time delays[J/OL]. Journal of Systems Science and Complexity, 2021[2021-12-10]. https:// doi.org/10. 1007/s11424-021-0108-2.
[1] 苏晓艳,陈京荣,尹会玲. 广义区间值Pythagorean三角模糊集成算子及其决策应用[J]. 《山东大学学报(理学版)》, 2022, 57(8): 77-87.
[2] 韩卓茹,李善兵. 具有空间异质和合作捕食的捕食-食饵模型的正解[J]. 《山东大学学报(理学版)》, 2022, 57(7): 35-42.
[3] 孟旭东. 集合优化问题解集的稳定性和扩展适定性[J]. 《山东大学学报(理学版)》, 2022, 57(2): 98-110.
[4] 张钰倩,张太雷. 具有复发效应的SEAIR模型及在新冠肺炎传染病中的应用[J]. 《山东大学学报(理学版)》, 2022, 57(1): 56-68.
[5] 沈维,张存华. 时滞食饵-捕食系统的多次稳定性切换和Hopf分支[J]. 《山东大学学报(理学版)》, 2022, 57(1): 42-49.
[6] 朱彦兰,周伟,褚童,李文娜. 管理委托下的双寡头博弈的复杂动力学分析[J]. 《山东大学学报(理学版)》, 2021, 56(7): 32-45.
[7] 周艳,张存华. 具有集群行为的捕食者-食饵反应扩散系统的稳定性和Turing不稳定性[J]. 《山东大学学报(理学版)》, 2021, 56(7): 73-81.
[8] 郭慧瑛,杨富霞,张翠萍. 有有限Ext-强Ding投射维数的模的稳定性[J]. 《山东大学学报(理学版)》, 2021, 56(4): 31-38.
[9] 唐洁,魏玲,任睿思,赵思雨. 基于可能属性分析的粒描述[J]. 《山东大学学报(理学版)》, 2021, 56(1): 75-82.
[10] 阳忠亮, 郭改慧. 一类带有B-D功能反应的捕食-食饵模型的分支分析[J]. 《山东大学学报(理学版)》, 2020, 55(7): 9-15.
[11] 温晓,刘琪,高振,曾维新,吕咸青. 局部非侵入式约化基模型在瑞利-泰勒不稳定中的应用[J]. 《山东大学学报(理学版)》, 2020, 55(2): 109-117.
[12] 陈璐,张晓光. 一类自适应网络上的传染病模型研究[J]. 《山东大学学报(理学版)》, 2019, 54(9): 76-82.
[13] 王占平,袁恺英. 相对于余挠对的强Gorenstein内射模[J]. 《山东大学学报(理学版)》, 2019, 54(8): 102-107.
[14] 张瑜,赵仁育. Gorenstein FP-投射模及其稳定性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 79-85.
[15] 刘华,叶勇,魏玉梅,杨鹏,马明,冶建华,马娅磊. 一类离散宿主-寄生物模型动态研究[J]. 山东大学学报(理学版), 2018, 53(7): 30-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 何海伦, 陈秀兰*. 变性剂和缓冲系统对适冷蛋白酶MCP-01和中温蛋白酶BP-01构象影响的圆二色光谱分析何海伦, 陈秀兰*[J]. 山东大学学报(理学版), 2013, 48(1): 23 -29 .
[3] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[4] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[5] 罗斯特,卢丽倩,崔若飞,周伟伟,李增勇*. Monte-Carlo仿真酒精特征波长光子在皮肤中的传输规律及光纤探头设计[J]. J4, 2013, 48(1): 46 -50 .
[6] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[7] 冒爱琴1, 2, 杨明君2, 3, 俞海云2, 张品1, 潘仁明1*. 五氟乙烷灭火剂高温热解机理研究[J]. J4, 2013, 48(1): 51 -55 .
[8] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[9] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[10] 董伟伟. 一种具有独立子系统的决策单元DEA排序新方法[J]. J4, 2013, 48(1): 89 -92 .