您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (1): 75-82.doi: 10.6040/j.issn.1671-9352.4.2020.149

•   • 上一篇    下一篇

基于可能属性分析的粒描述

唐洁1,2(),魏玲1,2,*(),任睿思1,2,赵思雨1,2,3   

  1. 1. 西北大学数学学院, 陕西 西安 710127
    2. 西北大学概念、认知与智能研究中心, 陕西 西安 710127
    3. 咸阳师范学院数学与信息科学学院, 陕西 咸阳 712000
  • 收稿日期:2020-06-19 出版日期:2021-01-01 发布日期:2021-01-05
  • 通讯作者: 魏玲 E-mail:15385559385@163.com;wl@nwu.edu.cn
  • 作者简介:唐洁(1995—),女,硕士研究生,研究方向为形式概念分析、粗糙集理论和粒计算. E-mail: 15385559385@163.com
  • 基金资助:
    国家自然科学基金资助项目(61772021);国家自然科学基金资助项目(62006190);陕西省教育厅科研计划资助项目(19JK0929)

Granule description using possible attribute analysis

Jie TANG1,2(),Ling WEI1,2,*(),Rui-si REN1,2,Si-yu ZHAO1,2,3   

  1. 1. School of Mathematics, Northwest University, Xi'an 710127, Shaanxi, China
    2. Institute of Concepts, Cognition and Intelligence, Northwest University, Xi'an 710127, Shaanxi, China
    3. College of Mathematics and Information Science, Xianyang Normal University, Xianyang 712000, Shaanxi, China
  • Received:2020-06-19 Online:2021-01-01 Published:2021-01-05
  • Contact: Ling WEI E-mail:15385559385@163.com;wl@nwu.edu.cn

摘要:

粒计算是一种利用粒化信息的思想解决复杂问题的方法和有效工具。在粒化的过程中常常需要对粒进行描述, 因此粒描述成为了粒计算的一个基本问题。本文在考虑基于必然属性分析的粒描述基础上, 提出了基于可能属性分析的粒描述。首先, 将面向属性概念的外延看作形式背景上的可定义粒, 给出了可定义粒的描述方式; 然后, 利用概念的稳定性, 给出概念的极小生成子对可定义粒进行精简化描述; 最后, 通过任务分配的例子说明基于可能属性分析的粒描述的优势。

关键词: 粒计算, 粒描述, 形式概念分析, 稳定性, 可能属性

Abstract:

Granular computing is a method and effective tool of solving complicated problems by using information granularity. During the process of granularity, it is often accompanied with granule description, and granule description becomes a fundamental problem in granular computing. Inspired by necessary attribute analysis, this paper proposes granule description using possible attribute analysis. First, taking the extents of property oriented concepts as definable granules in the formal context, and defining the description of definable granule. Then, using the stability of concepts to define minimal generator of concept so that definable granule's description becomes concise. Finally, the advantage of granule description using possible attribute analysis is discussed by an example of task assignment.

Key words: granular computing, granule description, formal concept analysis, stability, possible attribute

中图分类号: 

  • O29

表1

形式背景K"

G a b c d e f
1 × × ×
2 × ×
3 × × ×
4 × × × ×
5 × × × ×
6 × ×

图1

面向属性概念格Lp(G, M, I)"

表2

非平凡正可定义粒及其极小生成子"

正可定义粒 面向属性概念 δB(C) 极小生成子
1246 (1246, abdef) ≥1/2 abdef
346 (346, abcef) ≤1/2 ace
125 (125, abcdf) ≤1/2 bcdf
136 (136, acdef) ≤1/2 ace
236 (236, abcde) ≤1/2 ace
36 (36, ace) ≥1/2 ace
46 (46, abef) ≥1/2 abef
26 (26, abde) ≤1/2 ae/bd
16 (16, adef) ≤1/2 ae
12 (12, abdf) ≤1/2 bd
25 (25, bcdf) ≥1/2 bcdf
1 (1, adf) ≥1/2 adf
2 (2, bd) ≥1/2 bd
6 (6, ae) ≥1/2 ae

表3

正可定义粒族及其极小生成子"

正可定义粒族 极小生成子
1246 abdef
346, 136, 236, 36 ace
125, 25 bcdf
46 abef
26 aebd
16, 6 ae
12, 2 bd
1 adf

表4

并不可约元及其极小生成子"

并不可约元 极小生成子
(36, ace) ace
(46, abef) abef
(25, bcdf) bcdf
(1, adf) adf
(2, bd) bd
(6, ae) ae

表5

形式背景Kc"

G a b c d e f
1 × × ×
2 × × × ×
3 × × ×
4 × ×
5 × ×
6 × × × ×

图2

面向属性概念格Lp(G, M, Ic)"

表6

非平凡负可定义粒及其极小生成子"

负可定义粒 面向属性概念 δB(C) 极小生成子
1346 (1346, bcdef) ≤1/2 bcdf
346 (346, bcdf) ≥1/2 bcdf
245 (245, acdef) ≤1/2 acef
145 (145, abcde) ≤1/2 ae/cd
125 (125, abcef) ≤1/2 acef
35 (35, abdef) ≤1/2 ae
25 (25, acef) ≥1/2 acef
45 (45, acde) ≤1/2 ae/cd
14 (14, bcde) ≤1/2 cd
15 (15, abce) ≤1/2 ae
1 (1, bce) ≥1/2 bce
3 (3, bdf) ≥1/2 bdf
4 (4, cd) ≥1/2 cd
5 (5, ae) ≥1/2 ae

表7

负可定义粒族及其极小生成子"

负可定义粒族 极小生成子
1346, 346 bcdf
245, 125, 25 acef
145, 45 aecd
35, 15, 5 ae
14, 4 cd
1 bce
3 bdf
1 王国胤, 张清华, 胡军. 粒计算研究综述[J]. 智能系统学报, 2007, 2 (6): 8- 26.
WANG Guoyin , ZHANG Qinghua , HU Jun . Summary of research on granular computing[J]. Journal of Intelligent Systems, 2007, 2 (6): 8- 26.
2 ZHI Huilai , LI Jinhai . Granule description based on formal concept analysis[J]. Knowledge-Based Systems, 2016, 104, 62- 73.
doi: 10.1016/j.knosys.2016.04.011
3 ZHI Huilai , LI Jinhai . Granule description based on positive and negative attributes[J]. Granular Computing, 2018, (4): 337- 350.
doi: 10.1007/s41066-018-0113-6
4 智慧来, 李金海. 基于必然属性分析的粒描述[J]. 计算机学报, 2018, 41 (12): 68- 85.
ZHI Huilai , LI Jinhai . Granule description based on necessary attribute analysis[J]. Journal of Computer Science, 2018, 41 (12): 68- 85.
5 ZHI Huilai , LI Jinhai . Granule description based knowledge discovery from incomplete formal contexts via necessary attribute analysis[J]. Information Sciences, 2019, 485, 347- 361.
doi: 10.1016/j.ins.2019.02.032
6 WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[C]//RIVAL I Ordered Sets. Reidel: Dordrecht-Boston, 1982: 445-470.
7 GANTER B , WILLE R . Formal concept analysis: mathematical fundations[M]. New York: Springer-Verlag, 1999.
8 张文修, 仇国芳. 基于粗糙集的不确定决策[M]. 北京: 清华大学出版社, 2005.
ZHANG Wenxiu , QIU Guofang . Uncertain decision based on rough set[M]. Beijing: Tsinghua University Press, 2005.
9 张文修, 姚一豫, 梁怡. 粗糙集与概念格[M]. 西安: 西安交通大学出版社, 2006.
ZHANG Wenxiu , YAO Yiyu , LEUNG Yee . Rough set and concept lattice[M]. Xi'an: Xi'an Jiaotong University Press, 2006.
10 YAO Yiyu. A comparative study of formal concept analysis and rough set theory in data analysis[C]//Rough Sets and Current Trends in Computing, 4th International Conference, RSCTC 2004, Uppsala, Sweden, June 1-5, 2004. Berlin: Springer, 2004: 59-68.
11 张文修, 梁怡, 吴伟志. 信息系统与知识发现[M]. 北京: 科学出版社, 2003.
ZHANG Wenxiu , LEUNG Yee , WU Weizhi . Information system and knowledge discovery[M]. Beijing: Science Press, 2003.
12 DVNTSCH I, GEDIGA G. Modal-style operators in qualitative data analysis[M]//Proceedings of the 2002 IEEE International Conference on Data Mining. Maebashi: IEEE Transactions on Knowledge and Data Enginerring, 2002.
13 KUZNETSOV S O . On stability of a formal concept[J]. Annals of Mathematics and Artificial Intelligence, 2007, 49 (1/2/3/4): 101- 115.
doi: 10.1007/s10472-007-9053-6
14 BABIN M A, KUZNETSOV S O. Approximating concept stability[C]//Proceedings of the 10th International Conference on Formal Concept Analysis. Berlin: Springer, 2012: 7-15.
15 DAVEY B A , PRIESTLEY H A . Introduction to lattices and order[M]. New York: Cambridge University Press, 2002.
[1] 郭慧瑛,杨富霞,张翠萍. 有有限Ext-强Ding投射维数的模的稳定性[J]. 《山东大学学报(理学版)》, 2021, 56(4): 31-38.
[2] 阳忠亮, 郭改慧. 一类带有B-D功能反应的捕食-食饵模型的分支分析[J]. 《山东大学学报(理学版)》, 2020, 55(7): 9-15.
[3] 李金海,贺建君,吴伟志. 多粒度形式概念分析的类属性块优化[J]. 《山东大学学报(理学版)》, 2020, 55(5): 1-12.
[4] 刘营营,米据生,梁美社,李磊军. 三支区间集概念格[J]. 《山东大学学报(理学版)》, 2020, 55(3): 70-80.
[5] 温晓,刘琪,高振,曾维新,吕咸青. 局部非侵入式约化基模型在瑞利-泰勒不稳定中的应用[J]. 《山东大学学报(理学版)》, 2020, 55(2): 109-117.
[6] 陈璐,张晓光. 一类自适应网络上的传染病模型研究[J]. 《山东大学学报(理学版)》, 2019, 54(9): 76-82.
[7] 王占平,袁恺英. 相对于余挠对的强Gorenstein内射模[J]. 《山东大学学报(理学版)》, 2019, 54(8): 102-107.
[8] 李粉宁,范敏,李金海. 形式概念分析中面向对象粒概念的动态更新[J]. 《山东大学学报(理学版)》, 2019, 54(4): 105-115.
[9] 李金海,吴伟志,邓硕. 形式概念分析的多粒度标记理论[J]. 《山东大学学报(理学版)》, 2019, 54(2): 30-40.
[10] 张瑜,赵仁育. Gorenstein FP-投射模及其稳定性[J]. 《山东大学学报(理学版)》, 2019, 54(12): 79-85.
[11] 钱婷,赵思雨,贺晓丽. 基于属性粒度研究决策形式背景的规则提取理论[J]. 《山东大学学报(理学版)》, 2019, 54(10): 113-120.
[12] 刘华,叶勇,魏玉梅,杨鹏,马明,冶建华,马娅磊. 一类离散宿主-寄生物模型动态研究[J]. 山东大学学报(理学版), 2018, 53(7): 30-38.
[13] 冯孝周,徐敏,王国珲. 具有B-D反应项与毒素影响的捕食系统的共存解[J]. 《山东大学学报(理学版)》, 2018, 53(12): 53-61.
[14] 李翠平,高兴宝. 求解具有约束的l1-范数问题的神经网络模型[J]. 《山东大学学报(理学版)》, 2018, 53(12): 90-98.
[15] 宋亮,冯金顺,程正兴. 多重Gabor框架的存在性与稳定性[J]. 山东大学学报(理学版), 2017, 52(8): 17-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 董爱君 李国君 邹青松. 含相邻三角形的平面图的列表边和列表全染色[J]. J4, 2009, 44(10): 17 -20 .
[2] 刘天宝,李宝宗,彭艳芬 . 有机物对沙癙幼虫麻醉活性的构效关系研究[J]. J4, 2006, 41(6): 129 -131 .
[3] 吴鹏飞,孟祥增,刘俊晓,马凤娟 . 基于结构与内容的网页主题信息提取研究[J]. J4, 2006, 41(3): 131 -134 .
[4] 祁英华,祁爱琴 . 一类时滞微分方程周期边值问题及其最大最小解[J]. J4, 2007, 42(7): 66 -71 .
[5] 吴洪博,乔希民, . 命题逻辑系统Ln中公式相对于有限理论的∑Γ模糊真度理论[J]. J4, 2008, 43(6): 1 -8 .
[6] 隋云云. 五值非线性序集逻辑系统中命题真度的分布[J]. J4, 2009, 44(1): 78 -82 .
[7] 张伟,付艳玲. 希尔伯特空间上近似对偶g-框架的扰动新结果及特征刻画[J]. 山东大学学报(理学版), 2016, 51(6): 49 -56 .
[8] 毕晓冬 . 完全正则半群的一个构造方法[J]. J4, 2007, 42(1): 40 -43 .
[9] 许兰图 . 非线性双曲[J]. J4, 2006, 41(4): 20 -24 .
[10] 张瑞,侯旭光*,郭战胜,郑海,施超. 皱纹盘鲍(Haliotis discus hannai)、黑足鲍(Haliotis iris)及其杂交F1代同工酶比较分析[J]. 山东大学学报(理学版), 2014, 49(03): 6 -11 .