您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2018, Vol. 53 ›› Issue (12): 53-61.doi: 10.6040/j.issn.1671-9352.0.2018.262

• • 上一篇    下一篇

具有B-D反应项与毒素影响的捕食系统的共存解

冯孝周1,徐敏2,王国珲3   

  1. 1.西安工业大学理学院, 陕西 西安 710021;2.陕西航天机电环境工程设计院有限责任公司, 陕西 西安 710100;3.西安工业大学 光电学院, 陕西 西安 710021
  • 出版日期:2018-12-20 发布日期:2018-12-18
  • 作者简介:冯孝周(1979— ),男,博士, 副教授,研究方向为偏微分方程应用及计算. E-mail:flxzfxz8@163.com
  • 基金资助:
    国家自然科学基金资助项目(61102144);陕西省教育厅科研计划专项(18JK0393);陕西省大学生创新创业训练计划资助项目(No201710702066);西安工业大学校长基金资助项目(XAGDXJJ17028);西安工业大学研究生教改资助项目(No2017033)

Coexistence solution of a predator-prey system with B-D functional response and toxin effects

FENG Xiao-zhou1, XU Min2, WANG Guo-hui3   

  1. 1. College of Science, Xian Technological University, Xian 710021, Shaanxi, China;
    2. Shaanxi Aerospace Electromechanical Environment Engineering Design Institute Co., Ltd., Xian 710100, Shaanxi, China;
    3. College of Optoelectronic Engineering, Xian Technological University, Xian 710021, Shaanxi, China
  • Online:2018-12-20 Published:2018-12-18

摘要: 研究了一类具有B-D反应项及毒素影响的捕-食饵系统在齐次Dirichlet边界条件下的平衡态问题。首先利用极大值原理及特征值比较原理给出了系统共存解的先验估计与无共存解的必要条件;其次利用Leray-Schauder度理论,通过计算锥映不动点指标,结合极值原理、上下解方法,阐明了共存解存在的充分条件;最后利用线性化算子及Riesz-Schauder理论证明了平衡态问题的平凡解和半平凡解的局部渐近稳定性。

关键词: B-D反应项, 捕食-食饵系统, 共存性, 稳定性

Abstract: The steady state of a predator-prey system with B-D reaction term and toxin effect under the homogeneous Dirichlet boundary condition is investigated. First, using the principle of maximum value and the comparison principle of eigenvalues, we give some prior estimates of coexistence solution on the system and obtain the necessary condition of non-coexistence solution. Secondly, by using the Leray-Schauder degree theory, the calculation of the fixed point index, the maximum principle and the method of upper and lower solutions, the sufficient condition for the existence of the coexistence solution is established. Finally, the local asymptotic stability of the trivial solution and the semi-trivial solution of the steady state system is proved by using the linearization operator and the Riesz-Schauder theory.

Key words: B-D functional response, predator-prey system, coexistence, stability

中图分类号: 

  • O175.26
[1] WU J H. Coexistence states for cooperative model with diffusion[J]. Computers and Mathematical with Applications, 2002, 43(14):1277-1290.
[2] ZHU C R, LAN K Q. Phase portraits, Hopf bifurcations and limit cycles of Leslie-Gower predator-prey systems with harvesting rates[J]. Discrete and Continuous Dynamical Systems: Series B, 2010, 14(1):289-306.
[3] ZHANG N, CHEN F D, SU Q Q. Dynamic behaviors of a harvesting Leslie-Gower predator-prey model[J]. Discrete Dynamics in Nature and Society, 2011, 15(1):309-323.
[4] ZHOU J, SHI J P. The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses[J]. Journal of Mathematical Analysis and Applications, 2013, 405(2):618-630.
[5] WU J H. Maximal attractor, stability and persistence for prey-predator model with saturation[J]. Mathematical and Computer Modelling, 1999, 30(11):7-16.
[6] DAS T, MUKHERJEE R N, CHAUDHURI K S. Harvesting of a prey-predator fishery in the presence of toxicity[J]. Applied Mathematics Modeling, 2009, 33(5):2282-2292.
[7] 霍海峰,姜慧敏,苏克所.霉素影响下的捕食-食饵模型最优控制问题[J].甘肃科学学报,2010,22(1):18-23. HUO Haifeng, JIANG Huimin, SU Kesuo. An optimal harvesting problem of a prey-predator model in the presence of toxieity[J]. Journal of Gansu Sciences, 2010, 22(1):18-23.
[8] 沈莉莉,赵维锐.一类具有时滞和毒素的功能性反应的植物-食草动物系统性态分析[J].湖北民族学院学报(自然科学版),2010,28(1):201-208. SHEN Lili, ZHAO Weirui. Analysis of a plant-herbivore model with time-delay and tox in determined functional response[J]. Journal of Hubei University for Nationalities(Natural Science Edition), 2010, 28(1):201-208.
[9] 范学良,雒志学,张宇功.毒素影响下具有阶段结构的食饵捕食种群系统生存研究[J].宁夏大学学报(自然科学版),2014,35(3):41-45. FAN Xueliang, LUO Zhixue, ZHANG Yugong. Analysis of prey-predator system dynamics behavior with a stage structure in the effects of toxicants[J]. Journal of Ningxia University(Natural Science Edition), 2014, 35(3):41-45.
[10] 陈显,王稳地,陈晓平.毒素对阶段结构的单种群持续生存的影响[J].西南师范大学学报(自然科学版),2011,36(3):54-59. CHEN Xian, WANG Wendi, CHEN Xiaoping. Effects on survival of stage structural single population with toxicant[J]. Journal of Southwest China Normal University(Natural Science Edition), 2011, 36(3):54-59.
[11] BEDDINGTON J R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. J Animal Ecol, 1975, 44(1):331-340.
[12] DEANGELIS D T, GOLDSTEIN R A. A model for trophic interaction[J]. Ecology, 1975, 56(2):881-892.
[13] 叶其孝,李正元,王明新,等.反应扩散方程引论[M]. 北京: 科学出版社, 2013: 1-56. YE Qixiao, LI Zhengyuan, WANG Mingxin, et al. Introduction to reaction-diffusion equations[M]. Beijing: Science Press, 2013: 1-56.
[14] 姜洪领.一类蜘蛛-昆虫模型平衡态正解的存在性[J].中山大学学报(自然科学版),2016,55(3):64-68. JIANG Hongling. The existence of steady-state positive solutions for a spider-insect model[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2016, 55(3):64-68.
[15] RYU Kimun, AHN Inkyung. Positive solution for ratio-dependent predator-prey interaction systems[J]. Journal of Differential Equations, 2005, 218(1):117-135.
[16] 袁海龙,李艳玲.一类捕食-食饵模型共存解的存在性与稳定性[J].陕西师范大学学报(自然科学版),2014,42(1):15-18. YUAN Hailong, LI Yanling. Coexistence of existence and stability of a predator-prey model[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2014, 42(1):15-18.
[17] KO W, RYU K. Coexistence states of a predator-prey system with non-monotonic functional response[J]. Nonlinear Anal RWA, 2007, 8(3):769-786.
[18] RUAN W H, FENG W. On the fixed point index and multiple steady-state solutions of reaction-diffusion systems[J]. Differential Integral Equations, 1995, 8(2):371-392.
[19] YAMADA Y. Stability of steady states for prey-predator diffusion eduations with homogeneous dirichlet conditions[J]. SIAM J Math Anal, 1990, 21(2):327-345.
[1] 刘华,叶勇,魏玉梅,杨鹏,马明,冶建华,马娅磊. 一类离散宿主-寄生物模型动态研究[J]. 山东大学学报(理学版), 2018, 53(7): 30-38.
[2] 李翠平,高兴宝. 求解具有约束的l1-范数问题的神经网络模型[J]. 《山东大学学报(理学版)》, 2018, 53(12): 90-98.
[3] 宋亮,冯金顺,程正兴. 多重Gabor框架的存在性与稳定性[J]. 山东大学学报(理学版), 2017, 52(8): 17-24.
[4] 白宝丽,张建刚,杜文举,闫宏明. 一类随机的SIR流行病模型的动力学行为分析[J]. 山东大学学报(理学版), 2017, 52(4): 72-82.
[5] 李金兰,梁春丽. 强Gorenstein C-平坦模[J]. 山东大学学报(理学版), 2017, 52(12): 25-31.
[6] 薛文萍,纪培胜. 混合AQC函数方程在FFNLS上的HUR稳定性[J]. 山东大学学报(理学版), 2016, 51(4): 1-8.
[7] 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134.
[8] 付娟,张睿,王彩军,张婧. 具有Beddington-DeAngelis功能反应项的捕食-食饵扩散模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(11): 115-122.
[9] 武婧媛,石瑞青. 一类包含媒体报道的SEQIHRS传染病模型的分析[J]. 山东大学学报(理学版), 2016, 51(1): 115-122.
[10] 林青腾,魏凤英. 具有饱和发病率随机SIQS传染病模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(1): 128-134.
[11] 李向良, 孙艳阁, 李英. CO2水基泡沫的稳定机理研究[J]. 山东大学学报(理学版), 2015, 50(11): 32-39.
[12] 王先飞, 江龙, 马娇娇. 具有Osgood型生成元的多维倒向重随机微分方程[J]. 山东大学学报(理学版), 2015, 50(08): 24-33.
[13] 方瑞, 马娇娇, 范胜君. 一类倒向随机微分方程解的稳定性定理[J]. 山东大学学报(理学版), 2015, 50(06): 39-44.
[14] 王春生, 李永明. 中立型多变时滞随机微分方程的稳定性[J]. 山东大学学报(理学版), 2015, 50(05): 82-87.
[15] 杨文彬, 李艳玲. 一类具有非单调生长率的捕食-食饵系统的动力学[J]. 山东大学学报(理学版), 2015, 50(03): 80-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 赵君1,赵晶2,樊廷俊1*,袁文鹏1,3,张铮1,丛日山1. 水溶性海星皂苷的分离纯化及其抗肿瘤活性研究[J]. J4, 2013, 48(1): 30 -35 .
[3] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[4] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[5] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[6] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[7] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[8] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[9] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[10] 王碧玉,曹小红*. 算子矩阵的Browder定理的摄动[J]. 山东大学学报(理学版), 2014, 49(03): 90 -95 .