《山东大学学报(理学版)》 ›› 2018, Vol. 53 ›› Issue (12): 90-98.doi: 10.6040/j.issn.1671-9352.0.2017.627
李翠平,高兴宝*
LI Cui-ping, GAO Xing-bao*
摘要: 提出了一个解约束最小 l1-范数问题的单层神经网络模型。与已有神经网络模型相比,提出的模型所需神经元数少且层数少。通过引入 Lyapunov 函数,证明了该模型的稳定性和收敛性。数值试验结果表明所提出的模型具有良好的性能。
中图分类号:
[1] KINDERLEHRER D, STAMPACCHIA G. An introduction to variational inequalities and their applications[M]. Salt Lake City: Academic Press, 1980. [2] ORTEGA J M, RHEINBOLDT W C. Iterative solution of nonlinear equation in several variables[M]. New York: Academic Press, 1970. [3] SOLODOV M V, TSENG P. Modified projection-type methods for monotone variational inequalities[J]. SIAM Journal on Control and Optimization, 1996, 34(5): 1814-1830. [4] TSENG P. A modified forward-backward splitting method for maximal monotone mappings[J]. SIAM Journal on Control and Optimization, 2000, 38(2): 431-446. [5] BERGER J O. Statistical decision theory and Bayesian analysis[M]. New York: Springer, 1985. [6] HARKER P T, PANG Jongshi. Finite dimensional variational inequality and nonlinear complementarity problem: a survey of theory, algorithms, and applications[J]. Math Program: Series B, 1990, 48:161-220. [7] HOPFIELD J J, TANK D W. Computing with neural circuits: a model[J]. Science, 1986, 233(4764):625-633. [8] TANK D W, HOPFIELD J J. Simple neural optimization networks: an A/D converter, signal decision circuit, and a linear programming circuit[J]. IEEE Transactions on Circuits and Systems, 1986, 33(5):533-541. [9] 夏又生, 叶大振. 解L1-范数极小化问题的神经网络[J]. 电子学报, 1997, 25(11):99-102. XIA Yousheng, YE Dazhen. Neural network for solving L1-norm minimization problem[J]. Acta Electronica Sinica, 1997, 25(11):99-102. [10] XIA Yousheng, WANG Jun. Neural networks for solving least absolute and related problems[J]. Neurocomputing, 1998, 19:13-21. [11] WANG Zhishun, CHEUNG J, XIA Yousheng, et al. Minimum fuel neural networks and their applications to overcomplete signal representations[J]. IEEE Transactions on Fundamental Theory and Applications, 2000, 47(8):1146-1159. [12] WANG Zhishun, HE Zhenya, CHEN Jiande. Robust time delay estimation of bioelectric signals[J]. IEEE Transactions on Bio-medical Engineering, 2005, 52(3):454-462. [13] WANG Zhishun, PETERSON B S. Constrained least absolute deviation neural networks[J]. IEEE Transactions on Neural Networks, 2008, 19(2):273-283. [14] XIA Yousheng, KAMEL M. Cooperative recurrent neural networks for the constrained L1 estimator[J]. IEEE Transactions on Signal Processing, 2007, 55(7):3192-3206. [15] XIA Yousheng, KAMEL M. A generalized least absolute deviation method for parameter estimation of autoregressive signals[J]. IEEE Transactions on Neural Networks, 2008, 19(1):107-118. [16] LIU Qingshan, WANG Jun. L1-Minimization algorithms for sparse signal reconstruction based on a projection neural network[J]. IEEE Transactions on Neural Networks, 2016, 27(6):89-707. [17] XIA Yousheng, SUN Changyin, ZHENG Weixing. Discrete-time neural network for fast solving large linear L1 estimation problems and its application to image restoration[J]. IEEE Transactions on Neural Networks, 2012, 23(5):812-820. [18] LI Cuiping, GAO Xingbao, LI Yawei, et al. A new neural network for l1-norm programing[J]. Neurocomputing, 2016, 202:98-103. [19] XIA Yousheng. A compact cooperative recurrent neural network for computing general constrained l1 norm estimators[J]. IEEE Transactions on Signal Processing, 2009, 57(9):3693-3697. [20] GAO Xingbao. A novel neural network for nonlinear convex programming[J]. IEEE Transactions on Neural Networks, 2004, 15(3):613-621. [21] LIU Qingshan, WANG Jun. A projection neural network for constrained quadratic minimax optimization[J]. IEEE Transactions on Neural Networks, 2015, 26:2891-2900. [22] XUE Xiaoping, BIAN Wei. A project neural network for solving degenerate quadratic minimax problem with linear constraints[J]. Neurocomputing, 2009, 72:1826-1838. [23] HU Xiaolin. Applications of the general projection neural network in solving extended linear-quadratic programming problems with linear constraints[J]. Neurocomputing, 2009, 72:1131-1137. [24] QIN Sitian, LE Xinyi, WANG Jun. A neurodynamic optimization approach to bilevel quadratic programming[J]. IEEE Transactions on Neural Networks, 2017, 28(11):2580-2591. [25] LE Xinyi, WANG Jun. A two-time-scale neurodynamic approach to constrained minimax optimization[J]. IEEE Transactions on Neural Networks, 2017, 28(3):620-629. [26] GAO Xingbao, LI Cuiping. A new neural network for convex quadratic minimax problems with box and equality constraints[J]. Computers and Chemical Engineering, 2017, 104:1-10. [27] GAO Xingbao. A neural network for a class of extended linear variational inequalities[J]. Chinese Journal of Electronics, 2001, 10(4):471-475. [28] GAO Xingbao, LIAO Lizhi. A neural network for monotone variational inequalities with linear constraints[J]. Physics Letters. A, 2003, 307(2):118-128. [29] DU Lili, GAO Xingbao. A neural network with finite-time convergence for a class of variational inequalities[C] // International Conference on Intelligent Computing. New York: Springer, 2006, 4113:32-41. [30] GAO Xingbao, LIAO Lizhi. A new projection-based neural network for constrained variational inequalities[J]. IEEE Transactions on Neural Networks, 2009, 15(4):622-628. [31] GAO Xingbao, LIAO Lizhi. A novel neural network for generally constrained variational inequalities[J]. Computers and Chemical Engineering, 2017, 104:1-10. [32] GAO Xingbao, LIAO Lizhi. A novel neural network for a class of convex quadratic minimax problems[J]. Neural Computation, 2006, 18(8):1818-1846. [33] HU Xiaolin, SUN Changyin, ZHANG Bo. Design of recurrent neural networks for solving constrained least absolute deviation problems[J]. IEEE Transactions on Neural Networks, 2010, 21(7):1073-1086. [34] RUSZCZYNSHI A. Nonlinear optimization[M]. New Jersey: Princrton University Press, 2006 [35] ZABCZYK J. Mathematical control theory: an introduction[M]. New York: Academic Press, 1992. [36] GAO Xingbao, LIAO Lizhi. A new one-layer network for linear and quadratic programming[J]. IEEE Transactions on Neural Networks, 2010, 21(6):918-929. |
[1] | 肖炜茗,王贵君. 基于Bernstein多项式的SISO三层前向神经网络的设计与逼近[J]. 山东大学学报(理学版), 2018, 53(9): 55-61. |
[2] | 刘华,叶勇,魏玉梅,杨鹏,马明,冶建华,马娅磊. 一类离散宿主-寄生物模型动态研究[J]. 山东大学学报(理学版), 2018, 53(7): 30-38. |
[3] | 张芳芳,曹兴超. 基于字面和语义相关性匹配的智能篇章排序[J]. 山东大学学报(理学版), 2018, 53(3): 46-53. |
[4] | 刘明明,张敏情,刘佳,高培贤. 一种基于浅层卷积神经网络的隐写分析方法[J]. 山东大学学报(理学版), 2018, 53(3): 63-70. |
[5] | 冯孝周,徐敏,王国珲. 具有B-D反应项与毒素影响的捕食系统的共存解[J]. 《山东大学学报(理学版)》, 2018, 53(12): 53-61. |
[6] | 宋亮,冯金顺,程正兴. 多重Gabor框架的存在性与稳定性[J]. 山东大学学报(理学版), 2017, 52(8): 17-24. |
[7] | 秦静,林鸿飞,徐博. 基于示例语义的音乐检索模型[J]. 山东大学学报(理学版), 2017, 52(6): 40-48. |
[8] | 白宝丽,张建刚,杜文举,闫宏明. 一类随机的SIR流行病模型的动力学行为分析[J]. 山东大学学报(理学版), 2017, 52(4): 72-82. |
[9] | 李金兰,梁春丽. 强Gorenstein C-平坦模[J]. 山东大学学报(理学版), 2017, 52(12): 25-31. |
[10] | 王长弘,王林山. 基于忆阻器的S-分布时滞随机神经网络的均方指数稳定性[J]. 山东大学学报(理学版), 2016, 51(5): 130-135. |
[11] | 薛文萍,纪培胜. 混合AQC函数方程在FFNLS上的HUR稳定性[J]. 山东大学学报(理学版), 2016, 51(4): 1-8. |
[12] | 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134. |
[13] | 付娟,张睿,王彩军,张婧. 具有Beddington-DeAngelis功能反应项的捕食-食饵扩散模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(11): 115-122. |
[14] | 武婧媛,石瑞青. 一类包含媒体报道的SEQIHRS传染病模型的分析[J]. 山东大学学报(理学版), 2016, 51(1): 115-122. |
[15] | 林青腾,魏凤英. 具有饱和发病率随机SIQS传染病模型的稳定性[J]. 山东大学学报(理学版), 2016, 51(1): 128-134. |
|