您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2018, Vol. 53 ›› Issue (12): 80-89.doi: 10.6040/j.issn.1671-9352.0.2018.057

• • 上一篇    下一篇

交叉熵蝙蝠算法求解期权定价模型参数估计问题

李国成1,王继霞2*   

  1. 1.皖西学院金融与数学学院, 安徽 六安 237012;2.河南师范大学数学与信息科学学院, 河南 新乡 453007
  • 出版日期:2018-12-20 发布日期:2018-12-18
  • 作者简介:李国成(1976— ),男,博士,副教授,研究方向为金融工程与计算智能. E-mail:liguocheng@wxc.edu.cn*通信作者简介:王继霞(1978— ),女,博士,副教授,研究方向为过程统计推断与金融风险管理. E-mail:jixiawang_78@163.com
  • 基金资助:
    国家自然科学基金资助项目(U1504701);安徽省科技厅软科学研究项目(1607a0202027);安徽省高等学校省级人文社会科学研究重点项目(SK2016A0971)

Calibrating option pricing models with cross entropy bat algorithm

LI Guo-cheng1, WANG Ji-xia2*   

  1. 1. School of Finance &
    Mathematics, West Anhui University, Luan 237012, Anhui, China;
    2. School of Mathematics and Information Sciences, Henan Normal University, Xinxiang 453007, Henan, China
  • Online:2018-12-20 Published:2018-12-18

摘要: 期权定价模型的参数估计问题通常是非线性优化问题,且是非凸优化问题,经典的优化方法已不再适用。为此探寻用交叉熵蝙蝠算法来求解Merton跳-扩散模型、Heston随机波动模型和Bates带跳的随机波动模型的参数估计问题。实证结果表明该方法是有效可行的。

关键词: 交叉熵蝙蝠算法, 期权定价模型, 参数估计, 跳-扩散模型, 随机波动模型

Abstract: Parameter estimation of option pricing model is usually a nonlinear optimization problem with no convex, which leads to the classical optimization method cannot be applied. Based on cross entropy bat algorithm, we studied how to solve parameter estimation problems of option pricing models such as Mertons jump-diffusion model, Hestons stochastic volatility model and Batess stochastic volatility with jump model. The empirical results show that the cross entropy bat algorithm is feasible and effective for solving the parameter estimation problems of option pricing model.

Key words: cross entropy bat algorithm, option pricing model, parameter estimation, jump-diffusion model, stochastic volatility model

中图分类号: 

  • O233
[1] BLACK F, SCHOLES M. The pricing of options and corporate liabilities[J]. Journal of Political Economy, 1973, 81:637-659.
[2] MERTON R C. Option pricing when underlying stock returns are discontinuous[J]. Journal of Financial Economics, 1976, 3:125-144.
[3] HESTON S L. A closed-form solution for options with stochastic volatility with applications to bonds and currency options[J]. Review of Financial Studies, 1993, 6(2):327-343.
[4] BATES D S. Jumps and stochastic volatility: exchange rate processes implicit in Deutsche mark options[J]. Review of Financial Studies, 1996, 9(1):69-107.
[5] 吴嘉伟, 孙升雪, 王力卉,等. 与期权定价模型相关的参数估计的研究综述[J]. 时代金融, 2015(11):268-269. WU Jiawei, SUN Shengxue, WANG Lihui, et al. A survey of parameter estimation related to option pricing model J]. Times Finance, 2015(11):268-269.
[6] ZHYLYEVSKYY O. A fast Fourier transform technique for pricing American options under stochastic volatility[J]. Review of Derivatives Research, 2010, 13(1):1-24.
[7] CONT R, TANKOV P. Non-parametric calibration of jump-diffusion option pricing models[J]. Journal of Computational Finance, 2004, 7(3):1-50.
[8] AVELLANEDA M, BUFF R, FRIEDMAN C, et al. Weighted Monte Carlo: a new technique for calibrating asset-pricing models[J]. International Journal of Theoretical and Applied Finance, 2001, 4(1):91-119.
[9] 李斌, 何万里. 一种寻找Heston期权定价模型参数的新方法[J]. 数量经济技术经济研究, 2015(3):129-146. LI Bin, HE Wanli. A new method of finding the parameters of Hestons option pricing model[J]. The Journal of Quantitative & Technical Economics, 2015(3):129-146.
[10] GERLICH F, GIESE A M, MARUHN J H, et al. Parameter identification in financial market models with a feasible point SQP algorithm[J]. Computational Optimization & Applications, 2012, 51(3):1137-1161.
[11] HE C, KENNEDY J S, COLEMAN T F, et al. Calibration and hedging under jump diffusion[J]. Review of Derivatives Research, 2006, 9(1):1-35.
[12] CHAN K C, KAROLYI G A, LONGSTAFF F A, et al. An empirical comparison of alternative models of the short-term interest rate[J]. Journal of Finance, 1992, 47(3):1209-1227.
[13] ESCOBAR M, GSCHNAIDTNER C. Parameters recovery via calibration in the Heston model: a comprehensive review[J]. Wilmott, 2016, 2016(86):60-81.
[14] GILLI M, SCHUMANN E. Calibrating option pricing models with heuristics[M] // BRABAZON A, ONEILL M, MARINGER D. Natural computing in computational finance. Berlin: Springer-verlag, 2011: 9-37.
[15 ] 王林, 张蕾, 刘连峰. 用模拟退火算法寻找Heston期权定价模型参数[J]. 数量经济技术经济研究, 2011(9):131-139. WANG Lin, ZHANG Lei, LIU Lianfeng. Calibration of Hestons option pricing model by using simulated annealing algorithm[J]. The Journal of Quantitative & Technical Economics, 2011(9):131-139.
[16] 王平, 王垣苏, 黄运成. 支持向量回归方法的跳跃扩散汇率期权定价[J]. 管理工程学报, 2011, 25(1):134-139. WANG Ping, WANG Hengsu, HUANG Yuncheng. Pricing jump-diffusion currency options with support vector regression[J]. Journal of Industrial Engineering and Engineering Management, 2011, 25(1):134-139.
[17] GILLI M, SCHUMANN E. Calibrating the Heston model with differential evolution[C] //International Conference on Applications of Evolutionary Computation. Berlin: Springer-verlag, 2010: 242-250.
[18] ARDIA D, DAVID J, ARANGO O, et al. Jump-diffusion calibration using differential evolution[J]. Wilmott, 2011,(55):76-79.
[19] 郭恒烨. 基于神经网络的优化Black-Scholes期权定价模型数值求解[J]. 哈尔滨师范大学自然科学学报, 2016, 32(4):41-44. GUO Henghua. Numerical solution of optimal Black-Scholes option pricing model based on neural network[J]. Natural Science Journal of Harbin Normal University, 2016, 32(4):41-44.
[20] FAN K, BRABAZON A, OSULLIVAN C, et al. Quantum-inspired evolutionary algorithms for calibration of the VG option pricing model[M] // GIACOBINI M. Lecture Notes in Computer Science. Berlin: Springer-Verlag, 2007: 189-198.
[21] 李国成, 肖庆宪. 求解期末亏损最小对冲问题的交叉熵蝙蝠算法[J]. 系统工程, 2014,(11):11-18. LI Guocheng, XIAO Qingxian. Cross-entropy-inspired bat algorithm for hedging problems with minimum shortfall[J]. Systems Engineering, 2014,(11):11-18.
[1] 梁小林,郭敏,李静. 更新几何过程的参数估计[J]. 山东大学学报(理学版), 2017, 52(8): 53-57.
[2] 李辉,冯四风. 基于粒子滤波参数估计的混沌保密通信系统[J]. J4, 2011, 46(9): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨军. 金属基纳米材料表征和纳米结构调控[J]. 山东大学学报(理学版), 2013, 48(1): 1 -22 .
[2] 孙小婷1,靳岚2*. DOSY在寡糖混合物分析中的应用[J]. J4, 2013, 48(1): 43 -45 .
[3] 杨伦,徐正刚,王慧*,陈其美,陈伟,胡艳霞,石元,祝洪磊,曾勇庆*. RNA干扰沉默PID1基因在C2C12细胞中表达的研究[J]. J4, 2013, 48(1): 36 -42 .
[4] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[5] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[6] 杨永伟1,2,贺鹏飞2,李毅君2,3. BL-代数的严格滤子[J]. 山东大学学报(理学版), 2014, 49(03): 63 -67 .
[7] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .
[8] 汤晓宏1,胡文效2*,魏彦锋2,蒋锡龙2,张晶莹2,. 葡萄酒野生酿酒酵母的筛选及其生物特性的研究[J]. 山东大学学报(理学版), 2014, 49(03): 12 -17 .
[9] 王碧玉,曹小红*. 算子矩阵的Browder定理的摄动[J]. 山东大学学报(理学版), 2014, 49(03): 90 -95 .
[10] 于秀清. P-集合的(σ,τ)-扩展模型与其性质[J]. 山东大学学报(理学版), 2014, 49(04): 90 -94 .