您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (5): 1-12.doi: 10.6040/j.issn.1671-9352.c.2020.002

• •    

多粒度形式概念分析的类属性块优化

李金海1,2,贺建君1,2,吴伟志3,4   

  1. 1.昆明理工大学数据科学研究中心, 云南 昆明 650500;2.昆明理工大学理学院, 云南 昆明 650500;3.浙江海洋大学数理与信息学院, 浙江 舟山 316022;4.浙江海洋大学浙江省海洋大数据挖掘与应用重点实验室, 浙江 舟山 316022
  • 发布日期:2020-05-06
  • 作者简介:李金海(1984— ),男,博士,教授,博士生导师,研究方向为大数据分析、概念认知学习、智能系统分析与集成. E-mail:jhlixjtu@163.com
  • 基金资助:
    国家自然科学基金资助项目(11971211,61976194);浙江省自然科学基金资助项目(LY18F030017)

Optimization of class-attribute block in multi-granularity formal concept analysis

LI Jin-hai1,2, HE Jian-jun1,2, WU Wei-zhi3,4   

  1. 1. Data Science Research Center, Kunming University of Science and Technology, Kunming 650500, Yunnan, China;
    2. Faculty of Science, Kunming University of Science and Technology, Kunming 650500, Yunnan, China;
    3. School of Mathematics, Physics and Information Science, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China;
    4. Key Laboratory of Oceanographic Big Data Mining and Application of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, Zhejiang, China
  • Published:2020-05-06

摘要: 针对现有的多粒度形式概念分析的介粒度标记方法无法实现类属性块内部信息的跨粒度层组合,基于实际应用需要将类属性块内部信息进一步划分为子类,通过跨粒度层重新组合各子类以提出多粒度类属性块,在此基础上分析多粒度类属性块的内部结构,揭示决策蕴涵随多粒度类属性块粒度粗细变化进行更新的规律,完善了基于多粒度形式概念分析的多层次知识发现理论与方法。

关键词: 粒计算, 形式概念分析, 概念格, 多粒度形式背景, 多粒度类属性块

Abstract: The existing meso-granularity labeled method in the multi-granularity formal concept analysis is not able to realize the cross-granularity combination for the internal information of class-attribute blocks. Motivated by this problem, this paper divides the internal information of a class-attribute block into sub-classes based on the requirements of practical applications, and puts forward multi-granularity class-attribute blocks by means of combining the obtained sub-classes in a cross-granularity way. Then it analyzes the internal structure of multi-granularity class-attribute blocks, and reveals the mechanism of how to update decision implications when the multi-granularity class-attribute block becomes from coarse to fine or fine to coarse. The obtained results in this paper can further improve the theory and method of multi-level knowledge discovery with multi-granularity formal concept analysis.

Key words: granular computing, formal concept analysis, concept lattice, multi-granularity formal context, multi-granularity class-attribute block

中图分类号: 

  • TP18
[1] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[C] //Ordered Sets. Berlin: Springer, 1982: 445-470.
[2] 谢志鹏, 刘宗田. 概念格的快速渐进式构造算法[J]. 计算机学报, 2002, 25(5):490-496. XIE Zhipeng, LIU Zongtian. A fast incremental algorithm for building concept lattice[J]. Chinese Journal of Computers, 2002, 25(5):490-496.
[3] 张文修, 魏玲, 祁建军. 概念格的属性约简理论与方法[J]. 中国科学E辑: 信息科学, 2005, 35(6):628-639. ZHANG Wenxiu, WEI Ling, QI Jianjun. Attribute reduction theory and approach to concept lattice[J]. Science in China Series E: Information Sciences, 2005, 35(6):628-639.
[4] 李进金, 张燕兰, 吴伟志, 等. 形式背景与协调决策形式背景属性约简与概念格生成[J]. 计算机学报, 2014, 37(8):1168-1774. LI Jinjin, ZHANG Yanlan, WU Weizhi, et al. Attribute reduction for formal context and consistent decision formal context and concept lattice generation[J]. Chinese Journal of Computers, 2014, 37(8):1168-1774.
[5] SHAO Mingwen, LIU Min, ZHANG Wenxiu. Set approximations in fuzzy formal concept analysis[J]. Fuzzy Sets and Systems, 2007, 158(23):2627-2640.
[6] ZHANG Zhuo. Constructing L-fuzzy concept lattices without fuzzy Galois closure operation[J]. Fuzzy Sets and Systems, 2018, 333:71-86.
[7] 马垣, 张学东, 迟呈英. 紧致依赖与内涵亏值[J]. 软件学报, 2011, 22(5):962-971. MA Yuan, ZHANG Xuedong, CHI Chengying. Compact dependencies and intent waned values[J]. Journal of Software, 2011, 22(5):962-971.
[8] WANG Lidong, LIU Xiaodong. Concept analysis via rough set and AFS algebra[J]. Information Sciences, 2008, 178(21):4125-4137.
[9] CHEN Jinkun, MI Jusheng, XIE Bin, et al. A fast attribute reduction method for large formal decision contexts[J]. International Journal of Approximate Reasoning, 2019, 106:1-17.
[10] 王霞, 江山, 李俊余, 等. 三元概念的一种构造方法[J]. 计算机研究与发展, 2019, 56(4):844-853. WANG Xia, JIANG Shan, LI Junyu, et al. A construction method of triadic concepts[J]. Journal of Computer Research and Development, 2019, 56(4):844-853.
[11] 胡可云, 陆玉昌, 石纯一. 概念格及其应用进展[J]. 清华大学学报(自然科学版), 2000, 40(9):77-81. HU Keyun, LU Yuchang, SHI Chunyi. Advances in concept lattice and its application[J]. Journal of Tsinghua University(Science & Technology), 2000, 40(9):77-81.
[12] POELMANS J, IGNATOV D I, KUZNETSOV S O, et al. Fuzzy and rough formal concept analysis: a survey[J]. International Journal of General Systems, 2014, 43(2):105-134.
[13] 徐伟华, 李金海, 魏玲, 等. 形式概念分析理论与应用[M]. 北京: 科学出版社, 2016. XU Weihua, LI Jinhai, WEI Ling, et al. Formal concept analysis: theory and application[M]. Beijing: Science Press, 2016.
[14] QI Jianjun, QIAN Ting, WEI Ling. The connections between three-way and classical concept lattices[J]. Knowledge-Based Systems, 2016, 91:143-151.
[15] LI Jinhai, HUANG Chenchen, QI Jianjun, et al. Three-way cognitive concept learning via multi-granularity[J]. Information Sciences, 2017, 378:244-263.
[16] ZHI Huilai, LI Jinhai. Granule description based on formal concept analysis[J]. Knowledge-Based Systems, 2016, 104:62-73.
[17] YAO Yiyu. Rough-set concept analysis: interpreting RS-definable concepts based on ideas from formal concept analysis[J]. Information Sciences, 2016, 346/347:442-462.
[18] 智慧来, 李金海. 基于必然属性分析的粒描述[J]. 计算机学报, 2018, 41(12):2702-2719. ZHI Huilai, LI Jinhai. Granule description based on necessary attribute analysis[J]. Chinese Journal of Computers, 2018, 41(12):2702-2719.
[19] YAO Yiyu. Interpreting concept learning in cognitive informatics and granular computing[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2009, 39(4):855-866.
[20] XU Weihua, LI Wentao. Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets[J]. IEEE Transactions on Cybernetics, 2016, 46(2):366-379.
[21] LI Jinhai, MEI Changlin, XU Weihua, et al. Concept learning via granular computing: a cognitive viewpoint[J]. Information Sciences, 2015, 298:447-467.
[22] SHI Yong, MI Yunlong, LI Jinhai, et al. Concurrent concept-cognitive learning model for classification[J]. Information Sciences, 2019, 496:65-81.
[23] 李金海, 米允龙, 刘文奇. 概念的渐进式认知理论与方法[J]. 计算机学报, 2019, 42(10):2233-2250. LI Jinhai, MI Yunlong, LIU Wenqi. Incremental cognition of concepts: theories and methods[J]. Chinese Journal of Computers, 2019, 42(10):2233-2250.
[24] ZHANG Tao, LI Hehe, LIU Mengqi, et al. Incremental concept-cognitive learning based on attribute topology[J]. International Journal of Approximate Reasoning, 2020, 118:173-189.
[25] BELOHLAVEK R, DE BAETS B, KONECNY J. Granularity of attributes in formal concept analysis[J]. Information Sciences, 2014, 260:149-170.
[26] 李金海, 吴伟志, 邓硕. 形式概念分析的多粒度标记理论[J]. 山东大学学报(理学版), 2019, 54(2):30-40. LI Jinhai, WU Weizhi, DENG Shuo. Multi-scale theory in formal concept analysis[J]. Journal of Shandong University(Natural Science), 2019, 54(2):30-40.
[27] 李金海, 李玉斐, 米允龙, 等. 多粒度形式概念分析的介粒度标记方法[J]. 计算机研究与发展, 2020, 57(2):447-458. LI Jinhai, LI Yufei, MI Yunlong, et al. Meso-granularity labeled method for multi-granularity formal concept analysis[J]. Journal of Computer Research and Development, 2020, 57(2):447-458.
[28] ZADEH L A.Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy Sets and Systems, 1997, 90(2):111-127.
[29] LIN T Y. Granular computing on binary relations I: data mining and neighborhood systems[C] //Rough Sets in Knowledge Discovery. Berlin: Springer, 1998: 107-121.
[30] YAO Yiyu. Information granulation and rough set approximation[J]. International Journal of Intelligent Systems, 2001, 16(1):87-104.
[31] 苗夺谦, 徐菲菲, 姚一豫, 等. 粒计算的集合论描述[J]. 计算机学报, 2012, 35(2):2351-2363. MIAO Duoqian, XU Feifei, YAO Yiyu, et al. Set-theoretic formulation of granular computing[J]. Chinese Journal of Computers, 2012, 35(2):2351-2363.
[32] 王国胤, 张清华, 马希骜, 等. 知识不确定性问题的粒计算模型[J]. 软件学报, 2011, 22(4):676-694. WANG Guoyin, ZHANG Qinghua, MA Xiao, et al. Granular computing models for knowledge uncertainty[J]. Journal of Software, 2011, 22(4):676-694.
[33] 梁吉业, 钱宇华, 李德玉, 等. 大数据挖掘的粒计算理论与方法[J].中国科学:信息科学, 2015, 45(11):1355-1369. LIANG Jiye, QIAN Yuhua, LI Deyu, et al. Theory and method of granular computing for big data mining[J]. Scientia Sinica Informationis, 2015, 45(11):1355-1369.
[34] YAO Yiyu. Three-way granular computing, rough sets, and formal concept analysis[J]. International Journal of Approximate Reasoning, 2020, 116:106-125.
[35] MA Jianmin, ZHANG Wenxiu, LEUNG Yee, et al. Granular computing and dual Galois connection[J]. Information Sciences, 2007, 177(23):5365-5377.
[36] WU Weizhi, LEUNG Yee, MI Jusheng. Granular computing and knowledge reduction in formal contexts[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(10):1461-1474.
[37] 陈德刚, 徐伟华, 李金海, 等. 粒计算基础教程[M]. 北京: 科学出版社, 2019. CHEN Degang, XU Weihua, LI Jinhai, et al. Elements of granular computing[M]. Beijing: Science Press, 2019.
[38] 张清华, 幸禹可, 王国胤. 概念知识粒与概念信息粒的相互转化[J]. 山东大学学报(理学版), 2010, 45(9):1-6. ZHANG Qinghua, XING Yuke, WANG Guoyin. Transformation between a concept knowledge granule and a concept information granule[J]. Journal of Shandong University(Natural Science), 2010, 45(9):1-6.
[39] WEI Ling, WAN Qing. Granular transformation and irreducible elements judgment based on pictorial diagrams[J]. IEEE Transactions on Cybernetics, 2016, 46(2):380-387.
[40] 米允龙,李金海,刘文奇,等. MapReduce框架下的粒概念认知学习系统研究[J].电子学报, 2018, 46(2):289-297. MI Yunlong, LI Jinhai, LIU Wenqi, et al. Research on granular concept cognitive learning system under MapReduce framework[J]. Acta Electronica Sinica, 2018, 46(2):289-297.
[41] 康向平, 苗夺谦. 基于粒计算的概念格拓展模型[J]. 同济大学学报(自然科学版), 2016, 44(7):1113-1120. KANG Xiangping, MIAO Duoqian. Expanded concept lattice based on granular computing[J]. Journal of Tongji University(Natural Science), 2016, 44(7):1113-1120.
[42] 李金海, 吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7):1-12. LI Jinhai, WU Weizhi. Granular computing approach for formal concept analysis and its research outlooks[J]. Journal of Shandong University(Natural Science), 2017, 52(7):1-12.
[43] QIAN Yuhua, LIANG Jiye, YAO Yiyu, et al. MGRS: a multi-granulation rough set[J]. Information Sciences, 2010, 180(6):949-970.
[44] WU Weizhi, LEUNG Yee. Theory and applications of granular labeled partitions in multi-scale decision tables[J]. Information Sciences, 2011, 181(18):3878-3897.
[45] SHE Yanhong, HE Xiaoli, QIAN Ting, et al. A theoretical study on object-oriented and property-oriented multi-scale formal concept analysis[J]. International Journal of Machine Learning and Cybernetics, 2019, 10(11):3263-3271.
[46] QI Jianjun, WEI Ling, WAN Qing. Multi-level granularity in formal concept analysis[J]. Granular Computing, 2019, 4(3):351-362.
[47] 张文修, 仇国芳. 基于粗糙集的不确定决策[M]. 北京:清华大学出版社, 2005. ZHANG Wenxiu, QIU Guofang. Uncertain decision making based on rough sets[M]. Beijing: Tsinghua University Press, 2005.
[48] 刘之茗, 李金海. 多粒度形式背景的表示[J]. 海南热带海洋学院学报, 2019, 26(5):59-64. LIU Zhiming, LI Jinhai. The representation of multi-granularity formal contexts[J]. Journal of Hainan Tropical Ocean University, 2019, 26(5):59-64.
[49] QU Kaishe, ZHAI Yanhui, LIANG Jiye, et al. Study of decision implications based on formal concept analysis[J]. International Journal of General Systems, 2007, 36(2):147-156.
[50] 翟岩慧, 李德玉, 曲开社. 决策蕴涵规范基[J]. 电子学报, 2015, 43(1):18-23. ZHAI Yanhui, LI Deyu, QU Kaishe. Canonical basis for decision implications[J]. Acta Electronica Sinica, 2015, 43(1):18-23.
[1] 刘营营,米据生,梁美社,李磊军. 三支区间集概念格[J]. 《山东大学学报(理学版)》, 2020, 55(3): 70-80.
[2] 李粉宁,范敏,李金海. 形式概念分析中面向对象粒概念的动态更新[J]. 《山东大学学报(理学版)》, 2019, 54(4): 105-115.
[3] 李金海,吴伟志,邓硕. 形式概念分析的多粒度标记理论[J]. 《山东大学学报(理学版)》, 2019, 54(2): 30-40.
[4] 钱婷,赵思雨,贺晓丽. 基于属性粒度研究决策形式背景的规则提取理论[J]. 《山东大学学报(理学版)》, 2019, 54(10): 113-120.
[5] 张恩胜. 区间集概念格属性约简的组成与结构[J]. 山东大学学报(理学版), 2018, 53(8): 17-24.
[6] 黄桃林,牛娇娇,李金海. 基于粒辨识属性矩阵的动态形式背景约简更新方法[J]. 山东大学学报(理学版), 2017, 52(7): 13-21.
[7] 李金海,吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7): 1-12.
[8] 刘琳,魏玲,钱婷. 决策形式背景中具有置信度的三支规则提取[J]. 山东大学学报(理学版), 2017, 52(2): 101-110.
[9] 陈雪,魏玲,钱婷. 基于AE-概念格的决策形式背景属性约简[J]. 山东大学学报(理学版), 2017, 52(12): 95-103.
[10] 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104.
[11] 覃丽珍, 李金海, 王扬扬. 基于概念格的知识发现及其在高校就业数据分析中的应用[J]. 山东大学学报(理学版), 2015, 50(12): 58-64.
[12] 马媛媛, 孟慧丽, 徐久成, 朱玛. 基于粒计算的正态粒集下的格贴近度[J]. 山东大学学报(理学版), 2014, 49(08): 107-110.
[13] 汤亚强, 范敏, 李金海. 三元形式概念分析下的认知系统模型及信息粒转化方法[J]. 山东大学学报(理学版), 2014, 49(08): 102-106.
[14] 张春英, 王立亚, 刘保相. 基于覆盖的区间概念格动态压缩原理与实现[J]. 山东大学学报(理学版), 2014, 49(08): 15-21.
[15] 张清华1,2,幸禹可2,王国胤2. 概念知识粒与概念信息粒的相互转化[J]. J4, 2010, 45(9): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!