您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (4): 105-115.doi: 10.6040/j.issn.1671-9352.0.2018.296

• • 上一篇    下一篇

形式概念分析中面向对象粒概念的动态更新

李粉宁1,2,范敏1,2*,李金海1,2   

  1. 1.昆明理工大学数据科学研究中心, 云南 昆明 650500;2.昆明理工大学理学院, 云南 昆明 650500
  • 发布日期:2019-04-08
  • 作者简介:李粉宁(1994— ),女,硕士研究生,研究方向为概念格与粒计算. E-mail:fenningli2016@163.com*通信作者简介:范敏(1975— ),女,博士,副教授,硕士生导师,研究方向为基于粗糙集、模糊集、博弈论的数据挖掘技术与决策分析. E-mail:fmkmust@163.com
  • 基金资助:
    国家自然科学基金资助项目(61562050,61305057,61573173)

Dynamic updating of object-oriented granular concepts in formal concept analysis

LI Fen-ning1,2, FAN Min1,2*, LI Jin-hai1,2   

  1. 1. Data Science Research Center, Kunming University of Science and Technology, Kunming 650500, Yunnan, China;
    2. Faculty of Science, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
  • Published:2019-04-08

摘要: 粒计算是当前计算智能研究领域中模拟人类思维的新方法,它覆盖了所有有关粒的理论、方法和技术,是解决复杂问题的有效工具。粒概念是粒计算与形式概念分析相结合提出的一个重要概念。针对动态形式背景中粒概念的更新问题,介绍了面向对象粒概念,分析了面向对象粒概念的外延与内涵的变化规律,并在对象与属性逐步删减的环境下给出了更新面向对象粒概念的方法。最后,通过数值实验验证了该算法的有效性。

关键词: 概念格, 粒计算, 粒概念, 动态更新

Abstract: Granular computing(GrC)is a new method to simulate humans thinking in the field of computational intelligence research. GrC includes all theories, methods and technologies related to granularity, and it is an effective tool to solve complex problems. Granular concept is an important notion which is defined by combining granular computing and formal concept analysis. In order to update the granular concepts in a dynamic formal context, this paper introduces the notion of an object-oriented granular concept, analyzes how the extent and intent of the object-oriented granular concept are changed, and puts forward approaches to update the object-oriented granular concepts when objects and attributes are gradually removed from a formal context. Finally, some numerical experiments are conducted to show the effectiveness of the proposed algorithms.

Key words: concept lattice, granular computing, granular concept, dynamic updating

中图分类号: 

  • TP18
[1] WILLE R. Restructuring lattice theory: an approach based on hierarchies of concepts[M]. RIVAL I. Ordered Sets. Boston: Reidel, 1982: 445-470.
[2] 张文修,魏玲,祁建军.概念格的属性约简理论与方法[J]. 中国科学(信息科学),2005, 35(6):628-639. ZHANG Wenxiu, WEI Ling, QI Jianjun. Attribute reduction theory and approach of concept lattices[J]. Scientia Sinica(Informationis), 2005, 35(6):628-639.
[3] GODIN R, MISSAOUI R, ALAOUI H. Incremental concept formation algorithm based on Galois(concept)lattice[J]. Computational Intelligence, 1995, 11:246-267.
[4] KUZNETSOV S O, OBIEDKOV S A. Comparing performance of algorithms for generating concept lattices[J]. Journal of Experimental and Theoretical Artificial Intelligence, 2002, 14(2/3):189-216.
[5] 胡可云, 陆玉昌, 石纯一. 概念格及其应用进展[J]. 清华大学学报(自然科学版), 2000, 40(9):77-81. HU Keyun, LU Yuchang, SHI Chunyi. Advances in concept lattice and its application[J]. Journal of Tsinghua University(Science and Technology), 2000, 40(9):77-81.
[6] DUNTSCH I, GEDIGA G. Modal-style operators in qualitative data analysis[C] // Proceedings of the 2002 IEEE International Conference on Data Mining, Washington: IEEE, 2002: 155-162.
[7] LI Jinhai, MEI Changlin, XU Weihua, et al. Concept learning via granular computing: a cognitive viewpoint[J]. Information Sciences, 2015, 298(1):447-467.
[8] XU Weihua, LI Wentao. Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets[J]. IEEE Transactions on Cybernetics, 2016, 46(2):366-379.
[9] 张文修,徐伟华.基于粒计算的认知模型[J].工程数学学报, 2008, 24(6):957-971. ZHANG Wenxiu, XU Weihua. Cognition model based on granular computing[J]. Chinese Journal of Engineering Mathematics, 2008, 24(6):957-971.
[10] 米允龙,李金海,刘文奇,等.MapReduce框架下的粒概念认知学习系统研究[J].电子学报, 2018, 46(2):289-297. MI Yunlong, LI Jinhai, LIU Wenqi, et al. Research on granular concept cognitive learning system under MapReduce framework[J]. Acta Electronica Sinica, 2018, 46(2):289-297.
[11] LI Jinhai, MEI Changlin, CHERUKURI A K, et al. On rule acquisition in decision formal contexts[J]. International Journal of Machine Learning and Cybernetics, 2013, 4(6):721-731.
[12] QI Jianjun, WEI Ling, YAO Yiyu. Three-way formal concept analysis[J]. Lecture Notes in Computer Science, 2014, 8818:732-741.
[13] HUANG Chenchen, LI Jinhai, MEI Changlin, et al. Three-way concept learning based on cognitive operators: an information fusion viewpoint[J]. International Journal of Approximate Reasoning, 2017, 84(1):1-20.
[14] YAO Yiyu. A comparative study of formal concept analysis and rough set theory in data analysis[C] // Proceedings of 4th International Conference on Rough Sets and Current Trends in Computing, Berlin: Springer, 2004: 59-68.
[15] YAO Yiyu, CHEN Yaohua. Rough set approximations in formal concept analysis[C] // International Conference on Foundations of Intelligent Systems, Berlin: Springer, 2004: 73-78.
[16] LIU Min, SHAO Mingwen, ZHANG Wenxiu, et al. Reduction method for concept lattices based on rough set theory and its application[J]. Computers and Mathematics with Applications, 2007, 53(9):1390-1410.
[17] YAO Yiyu. Concept lattices in rough set theory[C] // Proceedings of the 23rd International Meeting of the North American Fuzzy Information Processing Society, Washington: IEEE, 2004: 796-801.
[18] WANG Xia, ZHANG Wenxiu. Relations of attribute reduction between object and property oriented concept lattices[J]. Knowledge-Based Systems, 2008, 21(5):398-403.
[19] WEI Ling, QIAN Ting. Three-way object oriented concept lattice and the three-way property oriented concept lattice[C] // International Conference on Machine Learning and Cybernetics, Washington: IEEE, 2015: 854-859.
[20] MA Jianmin, LEUNG Yee, ZHANG Wenxiu. Attribute reductions in object-oriented concept lattices[J]. International Journal of Machine Learning & Cybernetics, 2014, 5(5):789-813.
[21] ZADEH L A. Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy Sets and Systems, 1997, 19:111-127.
[22] YAO Yiyu. Perspectives of granular computing[C] // IEEE International Conference on Granular Computing, Washington: IEEE, 2013: 85-90.
[23] YAO Yiyu. Granular computing: basic issues and possible solutions[C] // Proceedings of the 5th Joint Conference on Information Sciences, Holland: Elsevier, 2000: 186-189.
[24] 梁吉业, 钱宇华, 李玉德,等. 大数据挖掘的粒计算理论与方法[J]. 中国科学(信息科学), 2015, 45(11):1355-1369. LIANG Jiye, QIAN Yuhua, LI Yude, et al. Theory and method of granular computing for big data mining[J]. Scientia Sinica(Informationis), 2015, 45(11):1355-1369.
[25] 徐计, 王国胤, 于洪. 基于粒计算的大数据处理[J]. 计算机学报, 2015, 38(8):1497-1517. XU Ji, WANG Guoyin, YU Hong. Review of big data processing based on granular computing[J]. Chinese Journal of Computers, 2015, 38(8):1497-1517.
[26] 苗夺谦, 徐菲菲, 姚一豫,等. 粒计算的集合论描述[J]. 计算机学报, 2012, 35(2):2351-2363. MIAO Duoqian, XU Feifei, YAO Yiyu, et al. Set-theoretic formulation of granular computing[J]. Chinese Journal of Computers, 2012, 35(2):2351-2363.
[27] 李金海, 吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7):1-12. LI Jinhai, WU Weizhi. Granular computing approach for formal concept analysis and its research outlooks[J]. Journal of Shandong University(Natural Science), 2017, 52(7):1-12.
[28] 康向平, 苗夺谦. 基于粒计算的概念格拓展模型[J]. 同济大学学报(自然科学版), 2016,44(7):1113-1120. KANG Xiangping, MIAO Duoqian. Expanded concept lattice based on granular computing[J]. Journal of Tongji University(Natural Science), 2016, 44(7):1113-1120.
[29] WU Weizhi, LEUNG Yee, MI Jusheng. Granular computing and knowledge reduction in formal contexts[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(10):1461-1474.
[30] 徐伟华, 李金海, 魏玲,等. 形式概念分析理论与应用[M]. 北京: 科学出版社, 2016. XU Weihua, LI Jinhai, WEI Ling, et al. Formal concept analysis: theory and application[M]. Beijing: Science Press, 2016.
[1] 李金海,吴伟志,邓硕. 形式概念分析的多粒度标记理论[J]. 《山东大学学报(理学版)》, 2019, 54(2): 30-40.
[2] 张恩胜. 区间集概念格属性约简的组成与结构[J]. 山东大学学报(理学版), 2018, 53(8): 17-24.
[3] 黄桃林,牛娇娇,李金海. 基于粒辨识属性矩阵的动态形式背景约简更新方法[J]. 山东大学学报(理学版), 2017, 52(7): 13-21.
[4] 李金海,吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7): 1-12.
[5] 刘琳,魏玲,钱婷. 决策形式背景中具有置信度的三支规则提取[J]. 山东大学学报(理学版), 2017, 52(2): 101-110.
[6] 陈雪,魏玲,钱婷. 基于AE-概念格的决策形式背景属性约简[J]. 山东大学学报(理学版), 2017, 52(12): 95-103.
[7] 黄伟婷,赵红,祝峰. 代价敏感属性约简的自适应分治算法[J]. 山东大学学报(理学版), 2016, 51(8): 98-104.
[8] 覃丽珍, 李金海, 王扬扬. 基于概念格的知识发现及其在高校就业数据分析中的应用[J]. 山东大学学报(理学版), 2015, 50(12): 58-64.
[9] 马媛媛, 孟慧丽, 徐久成, 朱玛. 基于粒计算的正态粒集下的格贴近度[J]. 山东大学学报(理学版), 2014, 49(08): 107-110.
[10] 汤亚强, 范敏, 李金海. 三元形式概念分析下的认知系统模型及信息粒转化方法[J]. 山东大学学报(理学版), 2014, 49(08): 102-106.
[11] 张春英, 王立亚, 刘保相. 基于覆盖的区间概念格动态压缩原理与实现[J]. 山东大学学报(理学版), 2014, 49(08): 15-21.
[12] 王彬弟,魏玲. 基于关联格的概念格约简理论[J]. J4, 2010, 45(9): 20-26.
[13] 张清华1,2,幸禹可2,王国胤2. 概念知识粒与概念信息粒的相互转化[J]. J4, 2010, 45(9): 1-6.
[14] 邱桃荣,王璐,熊树洁,白小明. 一种基于粒计算的知识隐藏方法[J]. J4, 2010, 45(7): 60-64.
[15] 张春英,薛佩军,刘保相 . CS(K)上的S-粗集特征[J]. J4, 2006, 41(2): 18-23 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘方圆,孟宪佳,汤战勇,房鼎益,龚晓庆. 基于smali代码混淆的Android应用保护方法Symbol`@@[J]. 山东大学学报(理学版), 2017, 52(3): 44 -50 .
[2] 廖祥文,张凌鹰,魏晶晶,桂林,程学旗,陈国龙. 融合时间特征的社交媒介用户影响力分析[J]. 山东大学学报(理学版), 2018, 53(3): 1 -12 .
[3] 顾沈明,陆瑾璐,吴伟志,庄宇斌. 广义多尺度决策系统的局部最优粒度选择[J]. 山东大学学报(理学版), 2018, 53(8): 1 -8 .
[4] 朱林. A4型箭图的可分单态射表示和RSS等价[J]. 山东大学学报(理学版), 2018, 53(2): 1 -8 .
[5] 刘园园,曹德欣,秦军. 非线性二层混合整数规划问题的区间算法[J]. 山东大学学报(理学版), 2018, 53(2): 9 -17 .
[6] 晏燕,郝晓弘. 差分隐私密度自适应网格划分发布方法[J]. 山东大学学报(理学版), 2018, 53(9): 12 -22 .
[7] 叶晓鸣,陈兴蜀,杨力,王文贤,朱毅,邵国林,梁刚. 基于图演化事件的主机群异常检测模型[J]. 山东大学学报(理学版), 2018, 53(9): 1 -11 .
[8] 巫朝霞,王佳琪. 一种无线单频谱安全拍卖算法[J]. 《山东大学学报(理学版)》, 2018, 53(11): 51 -55 .
[9] 万鹏飞,高兴宝. 一种解多目标优化问题的基于分解的人工蜂群算法[J]. 山东大学学报 (理学版), 2018, 53(11): 56 -66 .
[10] 曹伟东,戴涛,于金彪,王晓宏,施安峰. 化学驱模型中压力方程的交替方向解法改进[J]. 山东大学学报(理学版), 2018, 53(10): 88 -94 .