您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报 (理学版) ›› 2018, Vol. 53 ›› Issue (11): 56-66.doi: 10.6040/j.issn.1671-9352.0.2018.002

• • 上一篇    下一篇

一种解多目标优化问题的基于分解的人工蜂群算法

万鹏飞,高兴宝*   

  1. 陕西师范大学数学与信息科学学院, 陕西 西安 710119
  • 发布日期:2018-11-14
  • 作者简介:万鹏飞(1993— ), 男, 硕士研究生, 研究方向为智能优化算法. E-mail:wanpf@snnu.edu.cn*通信作者简介:高兴宝(1966— ), 男, 博士, 教授, 研究方向为智能优化方法、最优化理论与算法. E-mail:xinbaog@snnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61273311);中央高校基本科研业务费专项资金资助项目(GK201603002,2017TS002)

Novel artificial bee colony algorithm based on objective space decomposition for solving multi-objective optimization problems

WAN Peng-fei, GAO Xing-bao*   

  1. School of Mathematics and Information Science, Shannxi Normal University, Xian 710119, Shaanxi, China
  • Published:2018-11-14
  • About author:国家自然科学基金资助项目(61273311);中央高校基本科研业务费专项资金资助项目(GK201603002,2017TS002)
  • Supported by:
    国家自然科学基金资助项目(61273311);中央高校基本科研业务费专项资金资助项目(GK201603002,2017TS002)

摘要: 在处理多目标优化问题时,如何平衡所得解集的分布性与收敛性是一个困难又重要的工作。为此,提出了解决该问题的一种基于目标空间分解的人工蜂群算法(MOABC/D)。首先采用一组方向向量将目标空间分解成一系列的子区域,并在每一个子区域至少保留一个解来保持解的分布性,其次提出一个基于分解的选择策略和2个基于信息交换的搜索策略来提高人工蜂群算法的搜索能力,并采用一个基于高斯分布的搜索策略来增强人工蜂群算法的搜索效率。为验证所提算法的性能,与8种同类算法在10个测试问题上进行比较。结果表明,本文所提算法得到的解集具有更好的收敛性能和分布性能。

关键词: 多目标优化问题, 目标空间分解, 人工蜂群算法, 搜索策略

Abstract: When solving multi-objective optimization problems, how to keep balance between convergence and distribution of solutions is a task which extremely important, but it is not easy. In this paper, we develop a novel artificial bee colony algorithm based on objective space decomposition for solving these issues. First, we divide the objective space into a series of sub-regions by a set of direction vectors, and one solution is at least chosen at each sub-region to maintain the diversity of the obtained solutions. To improve the convergence performance, we propose a search strategy based on information exchanging and two selection strategies based on decomposition respectively to enhance the search capacity of artificial bee colony algorithm. Moreover, a search strategy based on Gaussian distribution is employed to improve the effectiveness. The proposed algorithm is empirically compared with eight state-of-the-art multi-objective evolutionary algorithms on 10 benchmark problems. The comparative results demonstrate that the convergence and distribution performance of the proposed algorithm are superior to the compared algorithms.

Key words: multi-objective optimization problems, objective space decomposition, artificial bee colony algorithm, search strategy

中图分类号: 

  • TP301
[1] ZHANG Yong, GONG Dunwei, DING Zhonghai. A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch[J]. Information Sciences, 2012, 192:213-227.
[2] LI Bingdong, LI Binlong, TANG Ke, et al. Many-objective evolutionary algorithms: A survey[J]. ACM Computing Surveys, 2015, 48(1):13.
[3] DEB K, PRATA A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
[4] ZITZLER E, LAUMANNS M, THIELE L. SPEA2: improving the strength Pareto evolutionary algorithm[M]. Zürich: Eidgenössische Technische Hochschule Zürich(ETH), für Technisch Informatik und Kommunikationsnetze(TIK), 2001: 103.
[5] DEB K, MOHAN M,MISHRA S. Evaluating the ε-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions[J]. Evolutionary Computation, 2005, 13(4):501-525.
[6] YANG Shengxiang, LI Miqing, LIU Xiaohui, et al. A grid-based evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(5):721-736.
[7] ZITZLER E, KÜNZLI S. Indicator-based selection in multiobjective search[J]. Lecture Notes in Computer Science, 2004, 3242:832-842.
[8] BADER J, ZITZLER E. HypE: an algorithm for fast hypervolume-based many-objective optimization[J]. Evolutionary Computation, 2001, 19(1):45-76.
[9] ZHANG Qingfu, LI Hui. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6):712-731.
[10] QI Yutao, MA Xiaoliang, LIU Fang, et al. MOEA/D with adaptive weight adjustment[J]. Evolutionary Computation, 2014, 22(2):231-264.
[11] KENNEDY J, EBERHART R.Particle swarm optimization[C] // Proceedings of IEEE International Conference On Neural Networks. Perth: IEEE, 1995: 1942-1948.
[12] GUO Wenzhong, LIU Genggeng, CHEN Guolong, et al. A hybrid multi-objective PSO algorithm with local search strategy for VLSI partitioning[J]. Frontiers of Computer Science, 2014, 8(2):203-216.
[13] CHEN Guolong, GUO Wenzhong, CHEN Yuzhong. A PSO-based intelligent decision algorithm for VLSI floorplanning[J]. Soft Compute, 2010, 14(12):1329-1337.
[14] KARABOGA D. An idea based on honey bee swarm for numerical optimization[R]. Ksyseri: Erciyes University, 2005.
[15] WANG Ling, ZHOU Gang, XU Ye, et al. An enhanced Pareto-based artificial bee colony algorithm for the multi-objective flexible jobshop scheduling[J]. The International Journal of Advanced Manufacturing Technology, 2012, 60(9/10/11/12):1111-1123.
[16] YAHYA M, SAKA M P. Construction site layout planning using multi-objective artificial bee colony algorithm with Levy flights[J]. Automation in Construction, 2014, 38(5):14-29.
[17] 葛宇, 梁静. 一种多目标人工蜂群算法[J]. 计算机科学, 2015, 42(9):257-262. GE Yu, LIANG Jing. Multi-objective artificial bee colony algorithm[J]. Computer Science, 2015, 42(9):257-262.
[18] BAI Jing, LIU Hong. Multi-objective artificial bee algorithm based on decomposition by PBI method[J]. Applied Intelligence, 2016, 45(4):976-991.
[19] DAI C,WANG Y, YE M. A new multi-objective particle swarm optimization algorithm based on decomposition[J]. Information Sciences, 2015, 325(c):541-557.
[20] 彭虎, 吴志健, 周新宇. 基于精英区域学习的动态差分进化算法[J]. 电子学报,2014,42(8):1522-1530. PENG Hu, WU Zhijian, ZHOU Xinyu. Dynamic differential evolution algorithm based on elite local learning[J]. Acta Electronica Sinica, 2014, 42(8):1522-1530.
[21] VELDHUIZEN D A V, LAMONT G B. Multiobjective evolutionary algorithm research: a history and analysis[R].Wright Patterson: Department of Electrical and Computer Engineering. Graduate School of Engineering, 1998.
[22] HUO Ying, ZHUANG Yi, GU Jingjing, et al. Elite-guided multi-objective artificial bee colony algorithm[J]. Applied Soft Computing, 2015, 32(c):199-210.
[23] GONZALEZ-ALVAREZ D L, VEGA-RODRIGUEZ M A, GOMEZ-PULIDO J A. Finding motifs in DNA sequences applying a multi-objective artificial bee colony algorithm[C] // Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. Berlin: Springer, 2015: 89-100.
[24] FALCÓN-CARDONA J G,COELLO C A C. iMOACO: a new indicator-based multi-objective ant colony optimization algorithm for continuous search spaces[M]. Berlin: Springer International Publishing, 2016: 389-398.
[25] SENDHOFF Bernhard, JIN Yaochu, TSANG Edward, et al. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion[C]. Vancouver: IEEE Congress on Evolutionary Computation, 2006: 892-899.
[26] MOORE J, CHAPMAN R. Application of particle swarm to multi-objective optimization[R]. Auburn: Department of Computer Science and Software Engineering, Auburn University, 1999.
[27] DEB K. Multiobjective optimization using evolutionary algorithms[M]. New York: John Wiley & Sons, Inc, 2001.
[28] STORN R, PRICE K. Differential evolution: a simple and efficient heuristic for global optimization over continuous space[J]. Journal of Global Optimization, 1997, 11(4):341-359.
[1] 曲滨鹏, 王智昊. 基于粒子群优化的适应Memetic算法分析[J]. 山东大学学报(理学版), 2014, 49(08): 118-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 邵勇. 半格序完全正则周期半群[J]. 山东大学学报(理学版), 2018, 53(10): 1 -5 .
[2] 巩增泰,高寒. n维模糊数值函数的预不变凸性[J]. 山东大学学报(理学版), 2018, 53(10): 72 -81 .
[3] 陈文倩,张孝金,昝立博. Gorenstein代数上的倾斜模的个数[J]. 山东大学学报(理学版), 2018, 53(10): 14 -16 .
[4] 郭寿桃,王占平. 正合零因子下模的Gorenstein同调维数[J]. 山东大学学报(理学版), 2018, 53(10): 17 -21 .
[5] 吴小英,王芳贵. 分次版本的Enochs定理[J]. 山东大学学报(理学版), 2018, 53(10): 22 -26 .
[6] 李美莲,邓青英. 平图的transition多项式的Maple计算[J]. 山东大学学报(理学版), 2018, 53(10): 27 -34 .
[7] 王丹,王正攀. 用禁止子半群刻画带簇的一个真子簇[J]. 山东大学学报(理学版), 2018, 53(10): 6 -8 .
[8] 梁星亮,吴苏朋,任军. C(P')系对幺半群的刻画[J]. 山东大学学报(理学版), 2018, 53(10): 9 -13 .
[9] 房启明,张莉. 无4-圈和5-圈的平面图的k-frugal列表染色[J]. 山东大学学报(理学版), 2018, 53(10): 35 -41 .
[10] 甄苇苇,曾剑,任建龙. 基于变分理论与时间相关的抛物型反源问题[J]. 山东大学学报(理学版), 2018, 53(10): 61 -71 .