您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (10): 72-81.doi: 10.6040/j.issn.1671-9352.0.2017.631

• • 上一篇    下一篇

n维模糊数值函数的预不变凸性

巩增泰,高寒   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2017-12-11 出版日期:2018-10-20 发布日期:2018-10-09
  • 作者简介:巩增泰(1966— ), 男, 博士, 教授, 研究方向为模糊分析学和粗糙集理论. E-mail:gongzt@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11461062,61763044)

Preinvexity of n-dimensional fuzzy number-valued functions

GONG Zeng-tai, GAO Han   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2017-12-11 Online:2018-10-20 Published:2018-10-09

摘要: 借助于n维模糊数空间上的偏序关系, 提出和定义了n维模糊映射的预不变凸性, 包括n维模糊映射的预不变凸、严格预不变凸、弱严格预不变凸、预拟不变凸、严格预拟不变凸、弱严格预拟不变凸性;进而讨论了各种预不变凸性之间的相互关系;并对其相互关系进行了举例说明。

关键词: 预不变凸模糊数值函数, 不变凸集, n维模糊数空间

Abstract: By means of the partial order relation in n-dimensional fuzzy number space, some preinvexity of n-dimensional fuzzy number-valued functions are defined, including preinvexity, weakly preinvexity, strictly preinvexity, weakly strictly preinvexity, prequasiinvexity, weakly prequasiinvexity, strictly prequasiinvexity, weakly strictly prequasiinvexity, and so on. In addition, their interrelation of the preinvexity of n-dimensional fuzzy number-valued functions are discussed, and some examples are given to illustrate the interrelation of the preinvexity.

Key words: invex sets, preinvexity fuzzy number-valued functions, n-dimensional fuzzy number space

中图分类号: 

  • O175.8
[1] NANDA S, KAR K. Convex fuzzy mappings[J]. Fuzzy Sets Systems, 1992, 48(1):129-132.
[2] FURUKAWA N. Convexity and local Lipschitz continuity of fuzzy-valued mappings[J]. Fuzzy Sets Systems, 1998, 93(1):113-119.
[3] SYAU Y R. On convex and concave fuzzy mappings[J]. Fuzzy Sets Systems, 1999, 103(1):163-168.
[4] SYAU Y R. Some properties of convex fuzzy mappings[J]. Journal of Fuzzy Mathematics, 1999, 7(1):151-160.
[5] GOETSCHEL R, VOXMAN JR W. Elementary fuzzy calculus[J]. Fuzzy Sets Systems, 1986, 18(1):31-43.
[6] YANG Xinmin, TEO K L, YANG Xiaoqi. A characterization of convex function[J]. Applied Mathematics Letters, 2000, 13(1):27-30.
[7] YAN Hong, XU Jiuping. A class of convex fuzzy mappings[J]. Fuzzy Sets and Systems, 2002, 129(1):47-56.
[8] ZHANG Cheng, YUAN Xuehai, LEE E S. Convex fuzzy mapping and operations of convex fuzzy mappings[J]. Computers and Mathematics with Applications, 2006, 51(1):143-152.
[9] PANIGRAHI M, PANDA G, NANDA S. Convex fuzzy mapping with differentiability and its application in fuzzy optimization[J]. European Journal of Operational Research, 2008, 185(1):47-62.
[10] LI Jueyou, NOOR M A. On properties of convex fuzzy mappings[J]. Fuzzy Sets and Systems, 2013, 219(2):113-125.
[11] NOOR M A. Fuzzy preinvex functions[J]. Fuzzy Sets and Systems, 1994, 64(1):95-104.
[12] SYAU Y R. Preinvex fuzzy mappings[J]. Computers and Mathematics with Applications, 1999, 37(3):31-39.
[13] GONG Zengtai, HAI Shexiang. Convexity of n-dimensional fuzzy number-valued functions and its applications[J]. Fuzzy Sets and Systems, 2016, 295:19-36.
[14] HAI Shexiang, GONG Zengtai, LI Hongxia. Generalized differentiability for n-dimensional fuzzy number-valued functions and fuzzy optimization[J]. Information Sciences, 2016, 374:151-163.
[15] 吴从炘, 马明. 模糊分析学基础[M]. 北京: 国防工业出版社, 1991. WU Congxin, MA Ming. Fuzzy analytical fundamation[M]. Beijing: Defense Industry Press, 1991.
[16] 杨新民, 戎卫东. 广义凸性及其应用[M]. 北京: 科学出版社, 2015. YANG Xinmin, RONG Weidong. Generalized convexity and application[M]. Beijing: Science Press, 2015.
[17] MOHAN S R, NEOGY S K. On invex sets and preinvex functions[J]. Journal of Mathematical Analysis and Applications, 1995, 189:901-908.
[1] 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56.
[2] 王娇. 一类非线性二阶常微分方程 Dirichlet问题正解的存在性[J]. 山东大学学报(理学版), 2018, 53(6): 64-69.
[3] 叶芙梅. 带导数项共振问题的可解性[J]. 山东大学学报(理学版), 2018, 53(2): 25-31.
[4] 张申贵. 四阶变指数椭圆方程Navier边值问题的多解性[J]. 山东大学学报(理学版), 2018, 53(2): 32-37.
[5] 张迪,刘文斌. p(t)-Laplacian算子的分数阶微分方程共振无穷多点边值问题解的存在性[J]. 山东大学学报(理学版), 2017, 52(12): 72-80.
[6] 何志乾, 苗亮英. 带弱奇性的二阶阻尼微分方程正周期解的存在性[J]. 山东大学学报(理学版), 2017, 52(10): 84-88.
[7] 闫东亮. 带有导数项的二阶周期问题正解[J]. 山东大学学报(理学版), 2017, 52(9): 69-75.
[8] 巩增泰,寇旭阳. 集值函数关于模糊测度Choquet积分的表示和积分原函数性质[J]. 山东大学学报(理学版), 2017, 52(8): 1-9.
[9] 李涛涛. 二阶半正椭圆微分方程径向正解的存在性[J]. 山东大学学报(理学版), 2017, 52(4): 48-55.
[10] 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72.
[11] 崔玉军,赵聪. 四阶微分方程奇异边值问题解的唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 73-76.
[12] 郭丽君. 非线性微分方程三阶三点边值问题正解的存在性[J]. 山东大学学报(理学版), 2016, 51(12): 47-53.
[13] 朱雯雯. 带参数的一阶周期边值问题正解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 36-41.
[14] 李晓燕,徐嫚. 二阶脉冲微分方程Dirichlet问题非平凡解的存在性及多解性[J]. 山东大学学报(理学版), 2016, 51(12): 29-35.
[15] 张申贵. p(x)-调和算子的Kirchhoff型方程的多重解[J]. 山东大学学报(理学版), 2016, 51(10): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!