您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (10): 61-71.doi: 10.6040/j.issn.1671-9352.0.2018.093

• • 上一篇    下一篇

基于变分理论与时间相关的抛物型反源问题

甄苇苇,曾剑,任建龙   

  1. 兰州交通大学数理学院, 甘肃 兰州 730070
  • 收稿日期:2018-03-09 出版日期:2018-10-20 发布日期:2018-10-09
  • 作者简介:甄苇苇(1994— ),女,硕士研究生,研究方向为数学物理反问题. E-mail:1549070004@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11261029,11461039);甘肃省自然科学基金资助项目(145RJZA124)

Time dependent parabolic inverse source problem based on variational theory

ZHEN Wei-wei, ZENG Jian, REN Jian-long   

  1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Received:2018-03-09 Online:2018-10-20 Published:2018-10-09

摘要: 研究了一类变系数抛物型方程的源项重构问题,这里的源项仅与时间相关。与以往工作不同,文中的附加条件是关于空间变量积分后得到的,这种类型的附加条件有利于消除随机选择所带来的误差,但同时会导致很多分析方法不可用。基于变分理论,首先给出了变分公式,并利用变分公式证明了解的唯一性;其次给出了时间离散模型和基于线性离散化的变分形式,导出了一系列先验估计,并证明了弱解的存在性。

关键词: 反源问题, 唯一性, 弱解存在性, 变分理论

Abstract: The problem of source term reconstruction for a class of parabolic equation with variable coefficients is studied, and the source term here is only time dependent. Different from the previous work, the additional condition in this paper is about the integration of the spatial variable, this type of additional conditions can help to eliminate the errors caused by random selection. At the same time, it will lead to many analysis methods unavailable. Based on the variational theory, firstly, the variational formula is given and the uniqueness of the solution is proved by the variational formula; Secondly, the time discrete model is given, and based on the variational form of linear discretization, a series of priori estimates are derived and the existence of weak solutions is proved.

Key words: uniqueness, variational theory, existence of weak solution, inverse source problem

中图分类号: 

  • O175.26
[1] LIN Y, TAIT R. On a class of non-local parabolic boundary value problems[J]. International Journal of Engineering Science, 1994, 32(3):395-407.
[2] 张颖婍,李占培,刘廷章,等.基于三维热传导方程的空调房间温度场软测量方法[J].测控技术,2016,35(8):25-27. ZHANG Yingqi, LI Zhanpei, LIU Tingzhang, et al. Soft measurement of an air-conditioning temperature field based on three-dimension air heat equation[J]. Measurement and Control Technology, 2016, 35(8):25-27.
[3] 陈珊,马俊春,刘朝辉,等.有罩雷达目标表面温度场求解方法[J].红外与激光工程,2017,46(4):76-81. CHEN Shan, MA Junchun, LIU Zhaohui, et al. Calculation method of shrouded radar target surface temperature field[J]. Infrared and Laser Engineering, 2017, 46(4):76-81.
[4] 薛益民.含积分边值条件的分数阶微分方程耦合系统正解的唯一性[J].四川大学学报(自然科学版),2016,53(6):1227-1232. XUE Yimin. Uniqueness of positive solution for a nonlinear fractional differential equation coupled system with integral boundary value condition[J]. Journal of Sichuan University(Natural Science Edition), 2016, 53(6):1227-1232.
[5] DENG Zuicha, YU Jianning, YANG Liu, et al. Identifying the coefficient of first-order in parabolic equation from final measurement data[J]. Mathematics & Computers in Simulation, 2008, 77(4):421-435.
[6] HASSANOV A, SLODICCKA M. An analysis of inverse source problems with final time measured output data for the heat conduction equation: a semigroup approach[J]. Applied Mathematics Letters, 2013, 26(2):207-214.
[7] BOCKSTAL K V, SLODICCKA M. Recovery of a space-dependent vector source in thermoelastic systems[J]. Computer Methods in Applied Mechanics & Engineering, 2017, 23(6):956-968.
[8] 张雷,李照兴.关于一类非线性系数反演问题最优解的适定性研究[J].兰州交通大学学报,2016,35(6):131-136. ZHANG Lei, LI Zhaoxing. Well-posedness of an optimal solution to the inverse problem of a class of nonlinear coefficient[J]. Journal of Lanzhou JiaoTong University, 2016, 35(6):131-136.
[9] YANG Liu, DEHGHAN M, YU Jianning, et al. Inverse problem of time-dependent heat sources numerical reconstruction[J]. Mathematics & Computers in Simulation, 2011, 81(8):1656-1672.
[10] FANG Xiaoping, DENG Youjun, LI Jing. Numerical methods for reconstruction of source term of heat equation from the final overdetermination[J]. Bulletin of the Korean Mathematical Society, 2015, 52(5):1495-1515.
[11] DENG Zuicha, YANG Liu, YU Jianning, et al. Identifying the radiative coefficient of an evolutional type heat conduction equation by optimization method[J]. Journal of Mathematical Analysis & Applications, 2010, 362(1):210-223.
[12] JOHANSSON T, LESNIC D. Determination of a spacewise dependent heat source[J]. Applied Mathematical Modelling, 2007, 209(1):66-80.
[13] DENG Zuicha, YANG Liu. An inverse problem of identifying the coefficient of first-order in a degenerate parabolic equation [J]. Journal of Computational & Applied Mathematics, 2011, 235(15):4404-4417.
[14] 王嘉炜,陈丽,唐圣学.基于傅里叶级数的功率器件热模型研究[J].电气应用,2017,36(18):80-83. WANG Jiawei, CHEN Li, TANG Shengxue. Research on thermal model of power devices based on Fourier series[J]. Electrical Applications, 2017, 36(18):80-83.
[15] 胡敏,黄旭伟.电子封装结构电源单元的热流耦合模拟及其优化设计[J].世界科技研究与发展,2016,38(3):613-618. HU Min, HUANG Xuwei. Heat and flow coupled simulation and optimization design of power supply unit for electronic packaging structure[J]. World Science-Technology Research and Development, 2016, 38(3):613-618.
[16] NECAS JINDRICH. Les méthodes directes en théorie des équations elliptiques[M]. Prague: Academia,1967.
[17] GILBARG D, TRUDINGER N S. Elliptic partial differential equations of second order [J]. Grundlehren Der Mathematischen Wissenschaften, 1997, 224(3):469-484.
[18] KACUR J. Method of rothe in evolution equations [M]. Berlin: Springer, 1986.
[1] 王素云,李永军. 带超越共振点非线性项的二阶常微分方程边值问题的可解性[J]. 山东大学学报(理学版), 2018, 53(6): 53-56.
[2] 肖新玲. 由马氏链驱动的正倒向随机微分方程[J]. 山东大学学报(理学版), 2018, 53(4): 46-54.
[3] 张莎,贾梅,李燕,李晓晨. 分数阶脉冲微分方程三点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2017, 52(2): 66-72.
[4] 扈培础,吴爱迪. 关于L-函数的问题[J]. 山东大学学报(理学版), 2016, 51(6): 1-15.
[5] 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134.
[6] 董建伟,娄光谱,王艳萍. 一个半导体简化能量输运模型稳态解的唯一性[J]. 山东大学学报(理学版), 2016, 51(2): 37-41.
[7] 王先飞, 江龙, 马娇娇. 具有Osgood型生成元的多维倒向重随机微分方程[J]. 山东大学学报(理学版), 2015, 50(08): 24-33.
[8] 陈强, 贾梅, 张海斌. 一类非线性分数阶微分方程四点边值问题解的存在性和唯一性[J]. 山东大学学报(理学版), 2015, 50(04): 42-48.
[9] 杨文彬, 李艳玲. 一类具有非单调生长率的捕食-食饵系统的动力学[J]. 山东大学学报(理学版), 2015, 50(03): 80-87.
[10] 董建伟, 程少华, 王艳萍. 一维稳态量子能量输运模型的古典解[J]. 山东大学学报(理学版), 2015, 50(03): 52-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!